Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2019notes-kleisli.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019notes-kleisli.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019notes-kleisli.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2019notes-kleisli.pdf")) % (defun e () (interactive) (find-LATEX "2019notes-kleisli.tex")) % (defun u () (interactive) (find-latex-upload-links "2019notes-kleisli")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-xpdfpage "~/LATEX/2019notes-kleisli.pdf") % (find-sh0 "cp -v ~/LATEX/2019notes-kleisli.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019notes-kleisli.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019notes-kleisli.pdf % file:///tmp/2019notes-kleisli.pdf % file:///tmp/pen/2019notes-kleisli.pdf % http://angg.twu.net/LATEX/2019notes-kleisli.pdf % «.title» (to "title") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") % \usepackage[a5paper,margin=1cm]{geometry} \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\DN{\Downarrow} \def\calL{{\mathcal{L}}} \def\calK{{\mathcal{K}}} % _____ _ _ _ % |_ _(_) |_| | ___ % | | | | __| |/ _ \ % | | | | |_| | __/ % |_| |_|\__|_|\___| % % «title» (to ".title") {\setlength{\parindent}{0em} \footnotesize Notes on [Kleisli65]: ``Every standard construction is induced by a pair of adjoint functors'' Proc. Amer. Math. Soc. 16 (1965), 544-546 \url{https://doi.org/10.1090/S0002-9939-1965-0177024-4} \url{https://www.ams.org/journals/proc/1965-016-03/S0002-9939-1965-0177024-4/} \url{https://www.ams.org/journals/proc/1965-016-03/S0002-9939-1965-0177024-4/S0002-9939-1965-0177024-4.pdf} \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020notes-kleisli.pdf} } \bsk % (find-books "__cats/__cats.el" "kleisli") % (find-kleisli65page (+ -543 544) "induced by the pair of adjoint" "functors F and G") % (find-kleisli65text (+ -543 544) "induced by the pair of adjoint" "functors F and G") (Page 544): Left: equations (3) and (4); Right: notation for the adjunction. % %D diagram ?? %D 2Dx 100 +20 +20 +20 +20 %D 2D 100 A0 B0 %D 2D %D 2D +20 A1 B1 C0 C1 E0 %D 2D %D 2D +20 A2 B2 C2 C3 E1 %D 2D %D 2D +20 D0 D1 E2 %D 2D %D ren A0 A1 A2 ==> C^2 C I %D ren B0 B1 B2 ==> FGFGA FGA A %D ren C0 C1 C2 C3 ==> FK K A GA %D ren D0 D1 ==> \calL \calK %D ren E0 E1 E2 ==> K GFK GFGFK %D %D (( A0 A1 <- .plabel= l p %D A1 A2 -> .plabel= l k %D B0 B1 <- .plabel= l FζGA %D B1 B2 -> .plabel= l ηA %D C0 C1 <-| %D C0 C2 -> %D C1 C3 -> %D C2 C3 |-> %D D0 D1 <- sl^ .plabel= a F %D D0 D1 -> sl_ .plabel= b G %D E0 E1 -> .plabel= r ζK %D E1 E2 <- .plabel= r GηFK %D )) %D enddiagram %D %D diagram comonad-equations %D 2Dx 100 +20 +20 %D 2D 100 A0 A1 A2 %D 2D %D 2D +20 A3 A4 A5 %D 2D %D ren A0 A1 A2 ==> C C^2 C^3 %D ren A3 A4 A5 ==> C^2 C C^2 %D %D (( A0 A1 <- .plabel= a Ck %D A1 A2 -> .plabel= a Cp %D A0 A3 <- .plabel= l kC %D A0 A4 <- .plabel= m \id %D A1 A4 <- .plabel= r p %D A2 A5 <- .plabel= r pC %D A3 A4 <- .plabel= b p %D A4 A5 -> .plabel= b p %D )) %D enddiagram %D $$\pu \diag{comonad-equations} \qquad \quad \diag{??} $$ The equations (1) and (2): % %D diagram ?? %D 2Dx 100 +20 +20 +20 +20 +20 +25 +30 %D 2D 100 B02 - B03 %D 2D | | %D 2D +15 A0 - A1 - A2 - A3 B10 - B11 - B12 - B13 %D 2D | %D 2D +15 B23 %D 2D %D 2D +20 D03 %D 2D | %D 2D +15 C0 - C1 - C2 - C3 D10 - D11 - D12 - D13 %D 2D | | %D 2D +15 D22 - D23 %D 2D %D ren A0 A1 A2 A3 ==> \calK \calL \calK \calL %D ren C0 C1 C2 C3 ==> \calL \calK \calL \calK %D ren B10 B11 B12 B13 ==> K FK GFK FGFK %D ren D10 D11 D12 D13 ==> A GA FGA GFGA %D ren B02 B03 B23 ==> K FK FK %D ren D03 D22 D23 ==> GA A GA %D %D (( A0 A1 -> .plabel= m F %D A1 A2 -> .plabel= m G %D A2 A3 -> .plabel= m F %D A0 A2 -> .curve= ^20pt %D A1 A3 -> .curve= _20pt %D %D B02 B03 |-> %D B10 B11 |-> B11 B12 |-> B12 B13 |-> %D B02 B12 -> .plabel= r ζK %D B03 B13 -> .plabel= r FζK %D B13 B23 -> .plabel= r ηFK %D B10 B02 |-> .curve= ^10pt %D B11 B23 |-> .curve= _10pt %D B03 B23 -> .slide= 25pt .plabel= r \uppereq %D )) %D (( C0 C1 -> .plabel= m G %D C1 C2 -> .plabel= m F %D C2 C3 -> .plabel= m G %D C1 C3 -> .curve= ^20pt %D C0 C2 -> .curve= _20pt %D %D D10 D11 |-> D11 D12 |-> D12 D13 |-> %D D22 D23 |-> %D D03 D13 -> .plabel= r ζGA %D D12 D22 -> .plabel= r ηA %D D13 D23 -> .plabel= r GηA %D D11 D03 |-> .curve= ^10pt %D D10 D22 |-> .curve= _10pt %D D03 D23 -> .slide= 25pt .plabel= r \lowereq %D )) %D enddiagram %D $$\pu \def\uppereq{\sm{ ((η*F)∘(F*ζ))K \\ = (ι*F)K }} \def\lowereq{\sm{ ((G*η)∘(ζ*G))A \\ = (ι*G)A }} \diag{??} $$ % (find-books "__cats/__cats.el" "kleisli") % (find-dn6file "diagforth.lua" "x+=") %L forths["xy+="] = function () %L local dx,dy = getwordasluaexpr(), getwordasluaexpr() %L ds:pick(0).x = ds:pick(0).x + dx %L ds:pick(0).y = ds:pick(0).y + dy %L end \newpage The triangular identities for an adjunction, in Kleisli's notation, are: \msk $(1) \;\; (η*F)∘(F*ζ) = ι*F$ $(2) \;\; (G*η)∘(ζ*G) = ι*G$ \msk or, in diagrams: % %D diagram triangular-ids %D 2Dx 100 +20 +20 +20 +20 +20 %D 2D 100 .___________. .____. %D 2D | v | v %D 2D +20 A0 -> A1 -> A2 -> A3 B0 B1 %D 2D |___________^ |____^ %D 2D %D 2D +20 .___________. .____. %D 2D | v | v %D 2D +20 C0 -> C1 -> C2 -> C3 D0 D1 %D 2D |___________^ |____^ %D 2D %D ren A0 A1 A2 A3 B0 B1 ==> · · · · · · %D ren C0 C1 C2 C3 D0 D1 ==> · · · · · · %D %D (( A0 A2 -> .plabel= m I .curve= ^20pt %D A0 A2 midpoint xy+= 0 -6 .TeX= \DN\zeta place %D A0 A1 -> .plabel= m F %D A1 A2 -> .plabel= m G %D A2 A3 -> .plabel= m F %D A1 A3 -> .plabel= m I .curve= _20pt %D A1 A3 midpoint xy+= 0 6 .TeX= \DN\eta place %D %D A3 B0 midpoint .TeX= = place %D %D B0 B1 -> .plabel= m F .curve= ^12pt %D B0 B1 -> .plabel= m F .curve= _12pt %D B0 B1 midpoint xy+= 0 0 .TeX= \DN\iota place %D %D C1 C3 -> .plabel= m I .curve= ^20pt %D C1 C3 midpoint xy+= 0 -6 .TeX= \DN\zeta place %D C0 C1 -> .plabel= m G %D C1 C2 -> .plabel= m F %D C2 C3 -> .plabel= m G %D C0 C2 -> .plabel= m I .curve= _20pt %D C0 C2 midpoint xy+= 0 6 .TeX= \DN\eta place %D %D C3 D0 midpoint .TeX= = place %D %D D0 D1 -> .plabel= m G .curve= ^12pt %D D0 D1 -> .plabel= m G .curve= _12pt %D D0 D1 midpoint xy+= 0 0 .TeX= \DN\iota place %D )) %D enddiagram %D $$\pu \diag{triangular-ids} $$ % (find-kleisli65page (+ -543 544) "(1)") % (find-kleisli65text (+ -543 544) "(1)") \msk The he defines a comonad induced by that adjunction Def: $(FG, η, F*ζ*G) =: (C,k,p)$ %D diagram def-Ckp %D 2Dx 100 +20 +20 +20 +20 +20 +20 +20 %D 2D 100 .______________. %D 2D | v %D 2D 100 A0 -G> A1 -F> A2 B0 -G> B1 -F> B2 -G> B3 -F> B4 %D 2D |______________^ %D 2D .----------------------------. %D 2D | v %D 2D +30 C0 ---------> C1 D0 ---------> D1 ---------> D2 %D 2D |______________^ %D 2D +30 %D 2D %D ren A0 A1 A2 B0 B1 B2 B3 B4 ==> · · · · · · · · %D ren C0 C1 D0 D1 D2 ==> · · · · · %D %D (( A0 A1 -> .plabel= m G %D A1 A2 -> .plabel= m F %D A0 A2 -> .plabel= m I .curve= _20pt %D A0 A2 midpoint xy+= 0 6 .TeX= \DN\eta place %D %D B1 B3 -> .plabel= m I .curve= ^20pt %D B1 B3 midpoint xy+= 0 -6 .TeX= \DN\zeta place %D B0 B1 -> .plabel= m G %D B1 B2 -> .plabel= m F %D B2 B3 -> .plabel= m G %D B3 B4 -> .plabel= m F %D %D C0 C1 -> .plabel= m C %D C0 C1 -> .plabel= m I .curve= _20pt %D C0 C1 midpoint xy+= 0 6 .TeX= \DN\,k place %D %D D0 D1 -> .plabel= m C %D D1 D2 -> .plabel= m C %D D0 D2 -> .plabel= m I .curve= ^25pt %D D0 D2 midpoint xy+= 0 -8 .TeX= \DN\,p place %D )) %D enddiagram %D $$\pu \diag{def-Ckp} $$ %D diagram kp=i %D 2Dx 100 +30 +30 +20 +30 +30 +20 +30 %D 2D 100 .____________. .____________. .______. %D 2D | v | v | v %D 2D 100 A0 -> A1 -> A2 B0 -> B1 -> B2 C0 C1 %D 2D |______^ |______^ |______^ %D 2D %D ren A0 A1 A2 B0 B1 B2 C0 C1 ==> · · · · · · · · %D %D (( %D A0 A2 -> .plabel= m C .curve= ^25pt %D A0 A2 midpoint xy+= 0 -8 .TeX= \DN\,p place %D A0 A1 -> .plabel= m C %D A1 A2 -> .plabel= m C %D A1 A2 -> .plabel= m I .curve= _20pt %D A1 A2 midpoint xy+= 0 6 .TeX= \DN\,k place %D %D A2 B0 midpoint .TeX= = place %D %D B0 B2 -> .plabel= m C .curve= ^25pt %D B0 B2 midpoint xy+= 0 -8 .TeX= \DN\,p place %D B0 B1 -> .plabel= m C %D B1 B2 -> .plabel= m C %D B0 B1 -> .plabel= m I .curve= _20pt %D B0 B1 midpoint xy+= 0 6 .TeX= \DN\,k place %D %D B2 C0 midpoint .TeX= = place %D %D C0 C1 -> .plabel= m C .curve= ^15pt %D C0 C1 midpoint xy+= 0 0 .TeX= \DNι place %D C0 C1 -> .plabel= m C .curve= _15pt %D )) %D enddiagram %D $$\pu \diag{kp=i} $$ %D diagram pp %D 2Dx 100 +30 +25 +25 +20 +25 +25 +30 %D 2D 100 ._________________. ._________________. %D 2D | | | | %D 2D 100 A0 -> A1 ------> A3 B0 ------> B2 -> B3 %D 2D | ^ | ^ %D 2D +15 \---> A2 ---/ \---> B1 ---/ %D 2D %D ren A0 A1 A2 A3 ==> · · · · %D ren B0 B1 B2 B3 ==> · · · · %D %D (( %D A0 A3 -> .plabel= m C .curve= ^25pt %D A0 A3 midpoint xy+= 0 -8 .TeX= \DN\,p place %D A0 A1 -> .plabel= m C %D A1 A3 -> .plabel= m C %D A1 A2 -> .plabel= m C .curve= _7pt %D A2 A3 -> .plabel= m C .curve= _7pt %D A1 A3 midpoint xy+= 0 6 .TeX= \DN\,p place %D %D A3 B0 midpoint .TeX= = place %D %D B0 B3 -> .plabel= m C .curve= ^25pt %D B0 B3 midpoint xy+= 0 -8 .TeX= \DN\,p place %D B0 B2 -> .plabel= m C %D B2 B3 -> .plabel= m C %D B0 B1 -> .plabel= m C .curve= _7pt %D B1 B2 -> .plabel= m C .curve= _7pt %D B0 B2 midpoint xy+= 0 6 .TeX= \DN\,p place %D %D )) %D enddiagram %D $$\pu \diag{pp} $$ \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "kle" % End: