Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020groth-tops.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020groth-tops.tex" :end)) % (defun C () (interactive) (find-LATEXSH "lualatex 2020groth-tops.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2020groth-tops.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020groth-tops.pdf")) % (defun e () (interactive) (find-LATEX "2020groth-tops.tex")) % (defun u () (interactive) (find-latex-upload-links "2020groth-tops")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun d0 () (interactive) (find-ebuffer "2020groth-tops.pdf")) % (find-pdf-page "~/LATEX/2020groth-tops.pdf") % (find-sh0 "cp -v ~/LATEX/2020groth-tops.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020groth-tops.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020groth-tops.pdf % file:///tmp/2020groth-tops.pdf % file:///tmp/pen/2020groth-tops.pdf % http://angg.twu.net/LATEX/2020groth-tops.pdf % (find-LATEX "2019.mk") % «.newnode-at» (to "newnode-at") % «.sieves-MM-diagrams» (to "sieves-MM-diagrams") % «.grotop-Jcan» (to "grotop-Jcan") % «.grotop-J» (to "grotop-J") % «.grotop-on-C» (to "grotop-on-C") % «.big-J-to-small-j» (to "big-J-to-small-j") % «.small-j-to-big-J» (to "small-j-to-big-J") % «.embedding» (to "embedding") % «.nuclei» (to "nuclei") % «.nuclei-my» (to "nuclei-my") % «.partial-order» (to "partial-order") % «.archetypal» (to "archetypal") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \usepackage[backend=biber, style=alphabetic]{biblatex} % (find-es "tex" "biber") \addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu \long\def\ColorRed #1{{\color{Red1}#1}} \long\def\ColorViolet#1{{\color{MagentaVioletLight}#1}} \long\def\ColorViolet#1{{\color{Violet!50!black}#1}} \long\def\ColorGreen #1{{\color{SpringDarkHard}#1}} \long\def\ColorGreen #1{{\color{SpringGreenDark}#1}} \long\def\ColorGreen #1{{\color{SpringGreen4}#1}} \long\def\ColorGray #1{{\color{GrayLight}#1}} \long\def\ColorGray #1{{\color{black!30!white}#1}} \long\def\ColorBrown #1{{\color{Brown}#1}} \long\def\ColorBrown #1{{\color{brown}#1}} \long\def\ColorOrange#1{{\color{orange}#1}} \def\calS{\mathcal{S}} \def\covers{\text{ covers }} \def\pdiag#1{\left(\diag{#1}\right)} \def\Sieveson{\mathsf{Sieves\_on}} \def\Coveringsieveson{\mathsf{Covering\_sieves\_on}} \def\Coveringsieveson{\mathsf{Covsieves\_on}} \def\can{{\mathrm{can}}} \def\Jcan{{J_\mathrm{can}}} \def\Grotop{{\mathsf{Gro\_top}}} \def\SetCop{\Set^{\catC^\op}} \def\hasmax{\mathsf{hasmax}} \def\trans {\mathsf{trans}} \def\stab {\mathsf{stab}} % «newnode-at» (to ".newnode-at") % (find-es "dednat" "at:") % %L Node = Class { %L type = "Node", %L __tostring = function (node) return mytostring(node) end, %L __index = { %L v = function (node) return v(node.x,node.y) end, %L setv = function (node,v) node.x=v[1]; node.y=v[2]; return node end, %L }, %L } %L storenode = function (node) %L node = Node(node) %L table.insert(nodes, node) %L node.noden = #nodes -- nodes[node.noden] == node %L if node.tag then -- was: "and not nodes[node.tag]"... %L nodes[node.tag] = node -- nodes[node.tag] == node %L end %L return node %L end %L %L tow = function (vv, ww, a, b) %L local diff = ww-vv %L local diffrot90 = v(diff[2], -diff[1]) %L return vv + (a or 0.5)*diff + (b or 0)*diffrot90 %L end %L ats_to_vs = function (str) %L return (str:gsub("@(%w+)", "nodes[\"%1\"]:v()")) %L end %L forths["newnode:"] = function () %L local tag = getword() %L ds:push(storenode({tag=tag, TeX=phantomnode})) %L end %L forths["at:"] = function () %L local node = ds:pick(0) %L local vexpr = getword() %L node:setv(expr(ats_to_vs(vexpr))) %L end % ____ _ __ __ __ __ % / ___|(_) _____ _____ ___ | \/ | \/ | % \___ \| |/ _ \ \ / / _ \/ __| | |\/| | |\/| | % ___) | | __/\ V / __/\__ \ | | | | | | | % |____/|_|\___| \_/ \___||___/ |_| |_|_| |_| % % «sieves-MM-diagrams» (to ".sieves-MM-diagrams") % (grtp 1 "sieves-MM-diagrams") % (grt "sieves-MM-diagrams") Sieves on a category $\catC$: (See \cite[pages 38, 109]{MacLaneMoerdijk}) % % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 38) "Sieve on C =") % (find-maclanemoerdijkpage (+ 11 109) "Definition 1. A Grothendieck Topology") % %D diagram sieves-MM1-so %D 2Dx 100 +13 %D 2D 100 B C %D 2D %D 2D +13 A %D 2D %D (( A B -> .plabel= l g %D B C -> .plabel= a f %D %D )) %D enddiagram %D %D diagram sieves-MM1-3 %D 2Dx 100 +40 +65 +50 +20 %D 2D 100 A0 - A1 C0 D1 %D 2D | | | | %D 2D +20 A2 - A3 C1 D2 - D3 %D 2D %D 2D +10 B0' %D 2D +7 B0 - B1 %D 2D %D ren A0 A1 C0 ==> C \Sieveson(C) S %D ren A2 A3 C1 ==> D \Sieveson(D) h^*(S):= %D ren B0' ==> \catC\phantom{{}^\op} %D ren B0 B1 ==> \catC^\op \Set %D ren D2 D3 D1 ==> B D C %D %D (( A0 A1 |-> %D A0 A2 <- .plabel= l h %D A1 A3 -> .plabel= r h^* %D A0 A3 harrownodes nil 20 nil |-> %D A2 A3 |-> %D B0' place %D B0 B1 -> .plabel= a \Sieveson %D C0 C1 |-> %D %D newnode: C1' at: @C1+v(0,8) %D .TeX= \setofst{m}{\cod(m)=D,\;h∘m∈S} place %D %D D2 D3 -> .plabel= a m %D D3 D1 -> .plabel= r h %D )) %D enddiagram %D $$\pu \begin{array}{c} \begin{array}{rcl} t_C &:=& \setofst{f}{\cod(f)=C} \\ \Sieveson(C) &:=& \setofst{S⊆t_C}{ ∀\scalebox{0.75}{$ \pdiag{sieves-MM1-so} $}.\psm{f∈S \\↓\\ f∘g∈S} } \\ \end{array} \\ \\ \diag{sieves-MM1-3} \\ \end{array} $$ \bsk \bsk Sieves on a topological space $\Opens(X)$: (See \cite[page 70]{MacLaneMoerdijk}) % % (find-maclanemoerdijkpage (+ 11 69) "2. Sieves and Sheaves") % (find-maclanemoerdijkpage (+ 11 70) "a sieve S on U") % %D diagram sieves-MMT-3 %D 2Dx 100 +45 +60 +45 +20 %D 2D 100 A0 - A1 C0 D1 %D 2D | | | | %D 2D +20 A2 - A3 C1 D2 - D3 %D 2D %D 2D +10 B0' %D 2D +7 B0 - B1 %D 2D %D ren A0 A1 C0 ==> U \Sieveson(U) \calS %D ren A2 A3 C1 ==> V \Sieveson(V) (V⊆U)^*(\calS):= %D ren B0' ==> \Opens(X)\phantom{{}^\op} %D ren B0 B1 ==> \Opens(X)^\op \Set %D ren D2 D3 D1 ==> W V U %D %D (( A0 A1 |-> %D A0 A2 <- .plabel= l V⊆U %D A1 A3 -> .plabel= r (V⊆U)^* %D A0 A3 harrownodes nil 20 nil |-> %D A2 A3 |-> %D B0' place %D B0 B1 -> .plabel= a \Sieveson %D C0 C1 |-> %D %D newnode: C1' at: @C1+v(0,13) %D .TeX= \hstarSdef place %D %D D2 D3 -> .plabel= a W⊆V %D D3 D1 -> .plabel= r V⊆U %D )) %D enddiagram %D $$\pu \def\seup{\rotatebox{90}{$\scriptstyle ⊆$}} \def\hstarSdef{ \begin{array}{c} \setofst{W∈\Opens(V)}{W∈\calS} \\ =\calS∩\Opens(V) \\ \end{array} } \begin{array}{c} \begin{array}{rcl} t_U &:=& \setofst{V⊆\Opens(X)}{V⊆U} \\ &=& \Opens(U) \\ \Sieveson(U) &:=& \setofst{\calS⊆t_U}{ ∀\psm{V&⊆&U\\\seup\\W}. \psm{V∈S \\↓\\ W∈\calS} } \\ &=& \calD(t_U) \\ &=& \calD(\Opens(U)) \\ \end{array} \\ \\ \diag{sieves-MMT-3} \\ \end{array} $$ \newpage % ____ _ _ % / ___|_ __ ___ | |_ ___ _ __ | | ___ __ _ _ __ % | | _| '__/ _ \| __/ _ \| '_ \ _ | | / __/ _` | '_ \ % | |_| | | | (_) | || (_) | |_) | | |_| | | (_| (_| | | | | % \____|_| \___/ \__\___/| .__/ \___/ \___\__,_|_| |_| % |_| % % «grotop-Jcan» (to ".grotop-Jcan") Motivating case: Start with the case $\Sieveson: \Opens(X)^\op \to \Set$. A ``sieve on $U$'' is an element $\calS∈\Sieveson(U)$. We say that a sieve $\calU$ on $U$ ``covers $U$'' iff $\bigcup \calU = U$. Let $\Jcan(U) := \setofst{\calU∈\Sieveson(U)}{\bigcup \calU = U}$. This $\Jcan$ is a subfunctor of $\Sieveson: \Opens(X)^\op \to \Set$... Its action on morphisms is a restriction of the one in $\Sieveson$; we can define it as $\Jcan(V⊆U)(\calU) := \calU∩\Opens(V)$. This $\Jcan$ obeys these three properties: \msk $\begin{array}{rcl} \hasmax_\Jcan &:=& (∀U∈\Opens(X).\Opens(U)∈\Jcan(U)) \\ \trans_\Jcan &:=& (∀V⊆U.∀\calU∈\Jcan(U).(V⊆U)^*(\calU)∈\Jcan(V)) \\ \stab_\Jcan &:=& \pmat{ ∀U.∀\calU∈\Jcan(U).∀\calS∈\Sieveson(U). \\ (∀V∈\calU.((V⊆U)^*(\calS)∈\Jcan(V)))→(\calS∈\Jcan(U)) } \\ \end{array} $ \msk We will define ``Grotopness'' as their conjunction: % $$\Grotop_\Jcan := \hasmax_\Jcan ∧ \trans_\Jcan ∧ \stab_\Jcan$$ And we will draw $\Grotop_\Jcan$ in this way: %D diagram groth-top-usual %D 2Dx 100 +35 +60 %D 2D 100 A1 A3 %D 2D %D 2D +12 B1 B3 %D 2D | | %D 2D +17 C1 C3 %D 2D %D 2D +12 D1 D2 D3 %D 2D | | | %D 2D +17 E1 E2 E3 %D 2D %D ren A1 A3 ==> U (\Opens(U)∈\Jcan(U)) %D ren B1 B3 ==> U (\calU∈\Jcan(U)) %D ren C1 C3 ==> V (\calU∩\Opens(V)∈\Jcan(V)) %D ren D1 D2 D3 ==> U \calS (\calS∈\Jcan(U)) %D ren E1 E2 E3 ==> ∀V \calS∩\Opens(V) (∀V{∈}\,\calU.\,\calS∩\Opens(V)∈\Jcan(V)) %D %D (( A1 place A3 place %D C1 B1 -> %D B3 C3 -> %D %D newnode: D1' at: @D1+v(12,0) .TeX= \calU place %D newnode: E1' at: @D1+v(7,9) .TeX= \rotatebox{60}{$\in$} place %D E1 D1 -> %D D2 E2 |-> %D D3 E3 <- %D %D )) %D enddiagram %D $$\pu \diag{groth-top-usual} $$ It turns out that $\Grotop_\Jcan$ is true. \msk We will generalize this to: A {\sl Grothendieck topology on $\Opens(X)$} is any operation $J$ that takes each $U∈\Opens(X)$ to a subset $J(U) ⊆ \Sieveson(U)$ that obeys $\Grotop_J$. The property $\trans_J$ will guarantee that this $J$ is a subfunctor of $\Sieveson: \Opens(X)^\op \to \Set$. \newpage % ____ _ _ % / ___|_ __ ___ | |_ ___ _ __ | | % | | _| '__/ _ \| __/ _ \| '_ \ _ | | % | |_| | | | (_) | || (_) | |_) | | |_| | % \____|_| \___/ \__\___/| .__/ \___/ % |_| % % «grotop-J» (to ".grotop-J") % (grtp 3 "grotop-J") % (grt "grotop-J") First generalization... Start with the case $\Sieveson: \Opens(X)^\op \to \Set$. Let $J$ be an operation that takes each $U∈\Opens(X)$ to a subset $J(U)⊆\Sieveson(U)$. Define $\hasmax_J$, $\trans_J$, $\stab_J$ as: \msk $\begin{array}{rcl} \hasmax_J &:=& (∀U∈\Opens(X).\Opens(U)∈J(U)) \\ \trans_J &:=& (∀V⊆U.∀\calU∈J(U).(V⊆U)^*(\calU)∈J(V)) \\ \stab_J &:=& \pmat{ ∀U.∀\calU∈J(U).∀\calS∈\Sieveson(U). \\ (∀V∈\calU.((V⊆U)^*(\calS)∈J(V)))→(\calS∈J(U)) } \\ \end{array} $ \msk We will define $\Grotop_J$ as their conjunction: % $$\Grotop_J := \hasmax_J ∧ \trans_J ∧ \stab_J$$ and we will say that this $J$ is a Grothendieck topology on $\Opens(X)$ iff $\Grotop_J$ is true. \msk We will draw $\Grotop_J$ in this way: %D diagram groth-top-on-O(X) %D 2Dx 100 +35 +60 %D 2D 100 A1 A3 %D 2D %D 2D +12 B1 B3 %D 2D | | %D 2D +17 C1 C3 %D 2D %D 2D +12 D1 D2 D3 %D 2D | | | %D 2D +17 E1 E2 E3 %D 2D %D ren A1 A3 ==> U (\Opens(U)∈J(U)) %D ren B1 B3 ==> U (\calU∈J(U)) %D ren C1 C3 ==> V (\calU∩\Opens(V)∈J(V)) %D ren D1 D2 D3 ==> U \calS (\calS∈J(U)) %D ren E1 E2 E3 ==> ∀V \calS∩\Opens(V) (∀V{∈}\,\calU.\,\calS∩\Opens(V)∈J(V)) %D %D (( A1 place A3 place %D C1 B1 -> %D B3 C3 -> %D %D newnode: D1' at: @D1+v(12,0) .TeX= \calU place %D newnode: E1' at: @D1+v(7,9) .TeX= \rotatebox{60}{$\in$} place %D E1 D1 -> %D D2 E2 |-> %D D3 E3 <- %D %D )) %D enddiagram %D $$\pu \diag{groth-top-on-O(X)} $$ \newpage % ____ _ ____ % / ___|_ __ ___ | |_ ___ _ __ ___ _ __ / ___| % | | _| '__/ _ \| __/ _ \| '_ \ / _ \| '_ \ | | % | |_| | | | (_) | || (_) | |_) | | (_) | | | | | |___ % \____|_| \___/ \__\___/| .__/ \___/|_| |_| \____| % |_| % % «grotop-on-C» (to ".grotop-on-C") Second generalization: Start with the case $\Sieveson: \catC^\op \to \Set$. Let $J$ be an operation that takes each $C∈\catC$ to a subset $J(C)⊆\Sieveson(C)$. Define $\hasmax_J$, $\trans_J$, $\stab_J$ as: \msk $\begin{array}{rcl} \hasmax_J &:=& (∀C∈\catC.\;t_C∈J(C)) \\ \trans_J &:=& (∀(h:D→C).\,∀S∈J(C).\,h^*(S)∈J(D)) \\ \stab_J &:=& \pmat{ ∀C∈\catC.\,∀S∈J(C).\,∀R∈\Sieveson(C). \\ (∀(h:D→C)∈S.(h^*(R)∈J(D)))→(R∈J(C)) } \\ \end{array} $ \msk We will define $\Grotop_J$ as their conjunction: % $$\Grotop_J := \hasmax_J ∧ \trans_J ∧ \stab_J$$ and we will say that this $J$ is a Grothendieck topology on $\catC$ iff $\Grotop_J$ is true. \msk We will draw $\Grotop_J$ in this way: %D diagram groth-top-on-C %D 2Dx 100 +35 +70 %D 2D 100 A1 A3 %D 2D %D 2D +12 B1 B3 %D 2D | | %D 2D +17 C1 C3 %D 2D %D 2D +12 D1 D2 D3 %D 2D | | | %D 2D +17 E1 E2 E3 %D 2D %D ren A1 A3 ==> C (t_C∈J(C)) %D ren B1 B3 ==> C (S∈J(C)) %D ren C1 C3 ==> D (h^*(S)∈J(D)) %D ren D1 D2 D3 ==> C R (R∈J(C)) %D ren E1 E2 E3 ==> ∀D h^*(R) (∀(h:D→C)∈S.\,h^*(R)∈J(D)) %D %D (( A1 place A3 place %D C1 B1 -> .plabel= l h %D B3 C3 -> %D %D newnode: D1' at: @D1+v(12,0) .TeX= S place %D newnode: E1' at: @D1+v(6,5) .TeX= \rotatebox{38}{$\in$} place %D E1 D1 -> .plabel= l ∀h %D D2 E2 |-> %D D3 E3 <- %D %D )) %D enddiagram %D $$\pu \diag{groth-top-on-C} $$ \msk This is exactly the definition in \cite[page 109]{MacLaneMoerdijk} --- I have just reorganized it in a more visual way. % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 38) "Sieve on C =") % (find-maclanemoerdijkpage (+ 11 110) "Definition 1. A Grothendieck Topology") \newpage % «big-J-to-small-j» (to ".big-J-to-small-j") % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 222) "Theorem 2") From \cite[page 222]{MacLaneMoerdijk}: Theorem 2. Every Grothendieck topology $J$ on a small category $\catC$ determines a Lawvere-Tierney topology $j$ on the presheaf topos $\SetCop$. (...) % $$\begin{array}{rcl} j_C(S) &=& \setofst{g}{g^*(S) ∈ J(\dom(g))} \\ j_U(\calS) &=& \setofst{V∈\Opens(U)}{(V⊆U)^*(\calS) ∈ J(V)} \\ &=& \setofst{V∈\Opens(U)}{\calS∩\Opens(V) ∈ J(V)} \\ (j_U)_0 &=& λ\calS∈\calD(\Opens(U)). \\ && \;\;\;\; \setofst{V∈\Opens(U)}{\calS∩\Opens(V) ∈ J(V)} \\ \end{array} $$ \bsk % «small-j-to-big-J» (to ".small-j-to-big-J") % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 233) "V.4 Lawvere-Tierney Subsumes Grothendieck") From \cite[page 233]{MacLaneMoerdijk}: Theorem 1. If $\catC$ is a small category, the Grothendieck topologies $J$ on $\catC$ correspond exactly to Lawvere-Tierney topologies on the presheaf topos $\SetCop$. (...) Now any Lawvere-Tierney topology $j:Ω→Ω$ on $\SetCop$ classifies the subobject $J \monicto Ω$ defined as in (1.2) by: % $$\begin{array}{rcl} S∈J(C) &\text{iff}& \quad j_C(S) = t_C \\ \calS∈J(U) &\text{iff}& \quad j_U(\calS) = \Opens(U) \\ J(U) &=& \setofst{\calS∈\calD(\Opens(U))}{j_U(\calS) = \Opens(U)} \\ J_0 &=& λU∈\Opens(U).\;\setofst{\calS∈\calD(\Opens(U))}{j_U(\calS) = \Opens(U)} \\ \end{array} $$ \newpage % «embedding» (to ".embedding") % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 480) "IX.4. Embeddings and Surjections of Locales") % (find-maclanemoerdijkpage (+ 11 481) "Definition 1") From \cite[page 481]{MacLaneMoerdijk}: Definition 1. A map $f:Y→X$ of locales is an embedding iff the corresponding morphism of frames $f^{-1}: \Opens(X)→\Opens(Y)$ is surjective. Recall that for a map $f:Y→X$ of locales, the corresponding frame map $f^{-1}:\Opens(X) → \Opens(Y)$, considered as a map of posets, has a right adjoint $f_*: \Opens(Y)→\Opens(X)$ (Lemma 1.1). The unit and counit of this adjunction between posets state that $U≤f_*f^{-1}U$ for any $U∈\Opens(X)$, and that $f^{-1}f_*V≤V$. Moreover, the triangular identities for the adjunction reduce to the equalities: % $$(...) \quad \text{and} \quad (...)$$ %D diagram ?? %D 2Dx 100 +25 +25 +50 +25 +25 %D 2D 100 A0' A0 B0 - B1 C0 C0' %D 2D | | | | | %D 2D +20 A1' A1 B2 - B3 C1 C1' %D 2D %D 2D +15 D0 = D1 %D 2D %D 2D +15 E0 - E1 %D 2D %D ren A0' A0 B0 B1 C0 C0' ==> \Opens(Y) f^{-1}f_*V f^{-1}U U U \Opens(X) %D ren A1' A1 B2 B3 C1 C1' ==> \Opens(Y) V V f_*V f_*f^{-1}U \Opens(X) %D ren D0 D1 ==> \Opens(Y) \Opens(X) %D ren E0 E1 ==> Y X %D %D (( C1 .TeX= \mat{f_*f^{-1}U\\=jU} %D A0' A1' -> .plabel= l ε=\id %D A0 A1 -> .plabel= l ε_V=\id %D B0 B1 <-| %D B0 B2 -> %D B1 B3 -> %D B0 B3 harrownodes nil 20 nil <-> %D B2 B3 |-> %D C0 C1 -> .plabel= r η_U %D C0' C1' -> .plabel= r η=j %D D0 D1 <- sl^ .plabel= a f^{-1} %D D0 D1 -> sl_ .plabel= b f_*\;\text{(injective)} %D E0 E1 -> .plabel= a f %D E0 E1 -> .plabel= b \text{embedding} %D %D )) %D enddiagram %D $$\pu \diag{??} $$ For embeddings/inclusions $f:Y \ito X$ we have $\Opens(Y) = \setofst{Y∩U}{U∈\Opens(X)}$ \bsk Monad: % %D diagram ?? %D 2Dx 100 +30 +30 %D 2D 100 A0 - A1 - A2 %D 2D %D 2D +20 B0 - B1 - B2 %D 2D %D ren A0 A1 A2 ==> U jU jjU %D ren B0 B1 B2 ==> \Opens(X) \Opens(X) \Opens(X) %D %D (( A0 A1 -> .plabel= a η_U %D A1 A2 <- .plabel= a μ_U %D B0 B1 -> .plabel= a η %D B1 B2 <- .plabel= a μ %D %D )) %D enddiagram %D $$\pu \diag{??} $$ We can start from the monad, i.e., from $j$ obeying etcetcetc, and build $(X_j,\Opens(X_j)) := (Y,\Opens(Y))$ as: $X_j := X$, $\Opens(X_j) := \setofst{U∈\Opens(X)}{jU=U}$. \newpage % (jonp 3 "basic-definitions") % (jos "basic-definitions") \input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") \input 2019J-ops-defs.tex % (find-LATEX "2019J-ops-defs.tex") %L tdims = TCGDims {qrh=5, q=15, crh=12, h=60, v=25, crv=7} -- with v arrows %L tspec_PA = TCGSpec.new("46; 11 22 34 45, 25") %L tspec_PAQ = TCGSpec.new("46; 11 22 34 45, 25", ".???", "???.?.") %L tspec_PA :mp ({zdef="O_A(P)"}) :addlrs():print() :output() %L tspec_PAQ:mp ({zdef="O_A(P),J"}):addlrs():print() :output() %L tspec_PA :tcgq({tdef="(P,A)", meta="1pt p"}, "lr q h v ap") :output() %L tspec_PAQ:tcgq({tdef="(P,A),Q", meta="1pt p"}, "lr q h v ap") :output() %L %L tspec_PAC = TCGSpec.new("46; 11 22 34 45, 25", "?...", "???...") %L tspec_PAC:mp ({zdef="closed-op"}) :addlrs():print() :output() %L tspec_PAC:tcgq({tdef="closed-op", meta="1pt p"}, "lr q h v ap") :output() %L \pu %$$\tcg{(P,A)} \;\; \squigbij \;\;\; \zha{O_A(P)}$$ $$\tcg{(P,A),Q} \;\; \squigbij \;\;\; \zha{O_A(P),J}$$ %D diagram ??-1 %D 2Dx 100 +30 %D 2D 100 _6 %D 2D +15 _5 %D 2D +15 4_ _4 %D 2D +15 3_ _3 %D 2D +15 2_ _2 %D 2D +15 1_ _1 %D 2D %D ren 1_ 2_ 3_ 4_ ==> \ur11 \ur22 \ur34 \ur45 %D ren _1 _2 _3 _4 _5 _6 ==> \ul01 \ul02 \ul03 \ul04 \ul25 \ul26 %D %D (( 4_ 3_ = # -> %D 3_ 2_ -> %D 2_ 1_ = # -> %D %D _6 _5 -> %D _5 _4 -> %D _4 _3 -> %D _3 _2 = # -> %D _2 _1 = # -> %D %D 4_ _5 = # -> %D 3_ _4 -> %D 2_ _2 -> %D 1_ _1 -> %D %D 2_ _5 <- %D )) %D enddiagram %D %D diagram ??-2 %D 2Dx 100 +30 %D 2D 100 _6 %D 2D +15 _5 %D 2D +15 4_ _4 %D 2D +15 3_ _3 %D 2D +15 2_ _2 %D 2D +15 1_ _1 %D 2D %D ren 1_ 2_ 3_ 4_ ==> \ur11 \ur22 \ur34 \ur45 %D ren _1 _2 _3 _4 _5 _6 ==> \ul01 \ul02 \ul03 \ul04 \ul25 \ul26 %D %D (( 4_ 3_ = # -> %D 3_ 2_ -> %D 2_ 1_ = # -> %D %D _6 _5 -> %D _5 _4 -> %D _4 _3 -> %D _3 _2 = # -> %D _2 _1 = # -> %D %D 4_ _5 = # -> %D # 3_ _4 -> %D # 2_ _2 -> %D 2_ _3 -> %D # 1_ _1 -> %D %D # 2_ _5 <- %D )) %D enddiagram %D %D diagram ??-3 %D 2Dx 100 +30 %D 2D 100 _6 %D 2D +15 _5 %D 2D +15 4_ _4 %D 2D +15 3_ _3 %D 2D +15 2_ _2 %D 2D +15 1_ _1 %D 2D %D ren 1_ 2_ 3_ 4_ ==> 1▁ 2▁ 3▁ 4▁ %D ren _1 _2 _3 _4 _5 _6 ==> ▁1 ▁2 ▁3 ▁4 ▁5 ▁6 %D ren 1_ 2_ 3_ 4_ ==> \ur11 \ur22y \ur34 \ur45y %D ren _1 _2 _3 _4 _5 _6 ==> \ul01 \ul02 \ul03y \ul04y \ul25 \ul26y %D %D (( 4_ 3_ = # -> %D 3_ 2_ -> %D 2_ 1_ = # -> %D %D _6 _5 -> %D _5 _4 -> %D _4 _3 -> %D _3 _2 = # -> %D _2 _1 = # -> %D %D 4_ _5 = # -> %D # 3_ _4 -> %D # 2_ _2 -> %D 2_ _3 -> %D # 1_ _1 -> %D %D # 2_ _5 <- %D )) %D enddiagram %D $$\pu \def\ur#1#2{#1\underline{#2}} \def\ul#1#2{\underline{#1}#2} \diag{??-1} \qquad \diag{??-2} \qquad \diag{??-3} $$ \newpage % «nuclei» (to ".nuclei") % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 470) "IX. Localic Topoi") % (find-maclanemoerdijkpage (+ 11 480) "IX.4. Embeddings and Surjections of Locales") % (find-maclanemoerdijkpage (+ 11 483) "nucleus") From \cite[page 483]{MacLaneMoerdijk}: An operator $j: \Opens(X) → \Opens(X)$ satisfying the identities (2), (3'), (4) is called a {\sl nucleus} on the locale $X$. This nucleus determines the domain locale $Y$. Indeed, as stated at the start of of this paragraph, if $f:X→Y$ is an embedding of locales, then $\Opens(Y)$ is isomorphic to the set of fixed points $\setofst{U∈\Opens(X)}{jU=U}$ of the nucleus $j=f_*f^{-1}$. The converse of this observation also holds: \msk Proposition 3: Let $j:\Opens(X)→\Opens(X)$ be a nucleus on a locale $X$. Then the poset of $j$-fixed points $\setofst{U∈\Opens(X)}{jU=U}$ is a frame, and $j$ defines a surjective frame-morphism from $\Opens(X)$ into this frame of fixed points. \msk The locale corresponding to this frame of fixed points $\setofst{U∈\Opens(X)}{jU=U}$ is usually denoted by $X_j$ --- so the corresponding frame is: % $$\Opens(X_j) = \setofst{U∈\Opens(X)}{jU=U}.$$ \bsk % «nuclei-my» (to ".nuclei-my") An operator $J: H→H$ satisfying the identities $P≤P^*$, $P^* = P^{**}$, $(P∧Q)^* = P^*∧Q^*$ is called a {\sl nucleus} on the locale $H$. This nucleus determines the domain locale $Y$. Indeed, as stated at the start of of this paragraph, if $f:X→Y$ is an embedding of locales, then $\Opens(Y)$ is isomorphic to the set of fixed points $\setofst{U∈\Opens(X)}{jU=U}$ of the nucleus $j=f_*f^{-1}$. The converse of this observation also holds: \msk Proposition 3: Let $j:\Opens(X)→\Opens(X)$ be a nucleus on a locale $X$. Then the poset of $j$-fixed points $\setofst{U∈\Opens(X)}{jU=U}$ is a frame, and $j$ defines a surjective frame-morphism from $\Opens(X)$ into this frame of fixed points. \msk The locale corresponding to this frame of fixed points $\setofst{U∈\Opens(X)}{jU=U}$ is usually denoted by $X_j$ --- so the corresponding frame is: % $$\Opens(X_j) = \setofst{U∈\Opens(X)}{jU=U}.$$ \newpage % «partial-order» (to ".partial-order") { \def\P{P} \def\Q{Q} Let $𝐛P≡(\P,≤)$ be a partial order. ``$D$ is a down-set of $\P$'' means: $D⊆\P$ and $∀p_1,p_2∈\P.(p_1≤p_2)→(p_2∈D→p_1∈D)$. $\calD(𝐛P) := \setofst{D⊆\P}{D \text{ is a down-set of } 𝐛P}$. Note that $\calD(𝐛P) ⊆ \Pts(\P)$. \msk Let $𝐛Q≡(\Q,≤,⊤,∧)$ be a partial order with maximal element $⊤$ and binary meet operation $∧$. ``$U$ is an up-set of $𝐛Q$'' means $U⊆\Q$ and $∀q_1,q_2∈\Q.(q_1≤q_2)→(q_1∈U→q_2∈U)$. ``$U$ is closed by binary meets'' means $∀q_1,q_2∈\Q.(q_1∈U∧q_2∈U)→(q_1∧q_2∈U)$. ``$U$ is a filter in $𝐛Q$'' means: $U$ is an up-set of $𝐛Q$ closed by binary meets, with $⊤∈U$. $\calU(𝐛Q) := \setofst{U⊆\Q}{U \text{ is a up-set of } 𝐛Q}$. $\calF(𝐛Q) := \setofst{U⊆\Q}{U \text{ is a filter on } 𝐛Q}$. Note that $\calU(𝐛Q), \calF(𝐛Q) ⊆ \Pts(\Q)$. } \newpage % «archetypal» (to ".archetypal") % (grtp 2 "archetypal") % (grt "archetypal") Archetypal case: $(X,\Opens(X))$ is a topological space. $\Opens(X) ≡ (\Opens(X),⊆)$ is a partial order. $\Opens(U) ≡ (\Opens(U),⊆)$ is a partial order for any $U∈\Opens(X)$. ``$\calS$ is a sieve on $U$'' means $\calS∈\calD(\Opens(U))$. ``$\calU$ is a covering sieve on $U$'' means $\calU∈\calD(\Opens(U))$ and $\bigcup \calU = U$. $\Sieveson(U) := \setofst{\calS}{\text{$\calS$ is a sieve on $U$}}$ $\Sieveson(V⊆U)(\calS) := (V⊆U)^*(\calS) := \calS∩\Opens(V)$ $\Coveringsieveson(U) := \setofst{\calU}{\text{$\calU$ is a covering sieve on $U$}}$ $\Coveringsieveson(V⊆U)(\calU) := (V⊆U)^*(\calU) := \calU∩\Opens(V)$ $\Jcan(U) := \Coveringsieveson(U)$ $\Jcan(V⊆U)(\calU) := (V⊆U)^*(\calU) := \calU∩\Opens(V)$ $\hasmax_\Jcan := (∀U∈\Opens(X).\Opens(U)∈\Jcan(U))$ $\trans_\Jcan := (∀V⊆U.∀\calU∈\Jcan(U).(V⊆U)^*(\calU)∈\Jcan(V))$ $\stab_\Jcan := \pmat{ ∀U.∀\calU∈\Jcan(U).∀\calS∈\Sieveson(U). \\ (∀V∈\calU.((V⊆U)^*(\calS)∈\Jcan(V)))→(\calS∈\Jcan(U)) }$ $\Grotop_\Jcan := \hasmax_\Jcan ∧ \trans_\Jcan ∧ \stab_\Jcan$ $\Grotop_\Jcan$ is true. \newpage Grotopness (on topological spaces): $(X,\Opens(X))$ is a topological space. $\Opens(X) ≡ (\Opens(X),⊆)$ is a partial order. $\Opens(U) ≡ (\Opens(U),⊆)$ is a partial order for any $U∈\Opens(X)$. ``$\calS$ is a sieve on $U$'' means $\calS∈\calD(\Opens(U))$. \ColorGray{ ``$\calU$ is a covering sieve on $U$'' means $\calU∈\calD(\Opens(U))$ and $\bigcup \calU = U$. } $\Sieveson(U) := \setofst{\calS}{\text{$\calS$ is a sieve on $U$}}$ $\Sieveson(V⊆U)(\calS) := (V⊆U)^*(\calS) := \calS∩\Opens(V)$ \ColorGray{ $\Coveringsieveson(U) := \setofst{\calU}{\text{$\calU$ is a covering sieve on $U$}}$ $\Coveringsieveson(V⊆U)(\calU) := (V⊆U)^*(\calU) := \calU∩\Opens(V)$ } $J(U) ⊆ \Sieveson(U)$ $J(V⊆U)(\calU) := (V⊆U)^*(\calU) := \calU∩\Opens(V)$ $\hasmax_J := (∀U∈\Opens(X).\Opens(U)∈J(U))$ $\trans_J := (∀V⊆U.∀\calU∈J(U).(V⊆U)^*(\calU)∈J(V))$ $\stab_J := \pmat{ ∀U.∀\calU∈J(U).∀\calS∈\Sieveson(U). \\ (∀V∈\calU.((V⊆U)^*(\calS)∈J(V)))→(\calS∈J(U)) }$ $\Grotop_J := \hasmax_J ∧ \trans_J ∧ \stab_J$ \msk A Grothendieck topology $J$ on $\Opens(X)$ is a subfunctor $J:\Opens(X)^\op→\Set$ of $\Sieveson:\Opens(X)^\op→\Set$ that obeys $\Grotop_J$. \newpage From Lindenhovius, p.8., with a different notation: % % (find-books "__cats/__cats.el" "lindenhovius-gtop") % % % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 38) "Sieve on C =") % (find-maclanemoerdijkpage (+ 11 109) "Definition 1. A Grothendieck Topology") From Mac Lane/Moerdijk, p.109: \newpage % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 110) "Definition 1. A Grothendieck Topology") From Mac Lane/Moerdijk, p.110: Definition 1. A (Grothendieck) topology on a category $\catC$ is a function $J$ which assigns to each object $C$ of $\catC$ a collection $J(C)$ of sieves on $C$, in such a way that: (i) the maximal sieve $t_C = \setofst{f}{\cod(f)=C}$ is in $J(C)$; (ii) (stability axiom) if $S∈J(C)$, then $h^*(S)∈J(D)$ for any arrow $h:D→C$; (iii) (transitivity axiom) if $S∈J(C)$ and $R$ is any sieve on $C$ such that $h^*(R)∈J(D)$ for all $h:D→C$ in $S$, then $R∈J(C)$. $$ \begin{array}{rcl} J(C) &⊆& \Sieveson(C) \\ J(C) &∈& \Pts(\Sieveson(C)) \\ J &:& (C:\catC) → \Pts(\Sieveson(C)) \\ \hasmax_J &:=& ∀C.\;t_C∈J(C) \\ \trans_J &:=& ∀(h:D→C).\;∀S∈J(C).\;h^*(S)∈J(D) \\ \stab_J &:=& ∀C.∀S∈J(C).\;∀R∈\Sieveson(X). \\ && (∀(D\ton{h}C).\;h^*(R)∈J(D)) → (R∈J(C)) \\ \end{array} $$ We draw $(J, \mathsf{hasmaxs}_J, \trans_J, \stab_J)$ as: % % See: % (excp 6 "downcasing-2") % (exc "downcasing-2") % %D diagram groth-top-MM-p110 %D 2Dx 100 +25 +50 %D 2D 100 A1 A2 A3 %D 2D %D 2D +12 B1 B2 B3 %D 2D | | | %D 2D +17 C1 C2 C3 %D 2D %D 2D +12 D1 D2 D3 %D 2D | | | %D 2D +17 E1 E2 E3 %D 2D %D ren A1 A2 A3 ==> C t_C (t_C∈J(C)) %D ren B1 B2 B3 ==> C S (S∈J(C)) %D ren C1 C2 C3 ==> D h^*(S) (h^*(S)∈J(D)) %D ren D1 D2 D3 ==> C R (R∈J(C)) %D ren E1 E2 E3 ==> ∀D h^*(R) (∀h∈S.\;h^*(R)∈J(D)) %D %D (( A1 place A3 place %D B1 C1 <- .plabel= l h %D # B2 C2 |-> %D B3 C3 -> %D %D newnode: D0 at: @D1+v(12,0) .TeX= S place %D newnode: in at: @D1+v(6,3) .TeX= \rotatebox{32}{$∈$} place %D D1 E1 <- .plabel= l ∀h %D D2 E2 |-> %D D3 E3 <- %D %D )) %D enddiagram %D $$\pu \diag{groth-top-MM-p110} $$ \newpage \printbibliography \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020groth-tops veryclean make -f 2019.mk STEM=2020groth-tops pdf % Local Variables: % coding: utf-8-unix % ee-tla: "grt" % End: