Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020jacobs.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020jacobs.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020jacobs.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020jacobs.pdf")) % (defun e () (interactive) (find-LATEX "2020jacobs.tex")) % (defun u () (interactive) (find-latex-upload-links "2020jacobs")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020jacobs.pdf") % (find-sh0 "cp -v ~/LATEX/2020jacobs.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020jacobs.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020jacobs.pdf % file:///tmp/2020jacobs.pdf % file:///tmp/pen/2020jacobs.pdf % http://angg.twu.net/LATEX/2020jacobs.pdf % (find-LATEX "2019.mk") % «.4.8._quo-types-cat» (to "4.8._quo-types-cat") % «.10.4.2._compr-cats» (to "10.4.2._compr-cats") % % «.ccw1» (to "ccw1") % «.ccw1-bij» (to "ccw1-bij") % «.ccw1-bigbij» (to "ccw1-bigbij") % «.ccw1-three-rules» (to "ccw1-three-rules") % «.ccompc-prodI-and-prodE» (to "ccompc-prodI-and-prodE") % «.ccompc-sumI» (to "ccompc-sumI") % «.ccompc-sumE+» (to "ccompc-sumE+") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \usepackage[backend=biber, style=alphabetic]{biblatex} % (find-es "tex" "biber") \addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %L addabbrevs("|-", "⊢") %L addabbrevs("|->", "↦") % (find-dednat6 "dednat6/block.lua" "TexLines") \directlua{tf:processuntil(texlines:nlines())} \def\Eq{\text{Eq}} \def\dom{\text{dom}} \def\cod{\text{cod}} \def\psmdown#1#2{\psm{#1 \\ \dnto \\ #2}} \def\ov{\overline} \def\s{\dncdisplay} \def\dncdisplay[#1|#2]{\begin{pmatrix} #2 \\ #1 \end{pmatrix}} {\setlength{\parindent}{0em} \footnotesize Notes on Bart Jacobs's book "Categorical Logic and Type Theory" (Elsevier, 1999). \url{http://www.cs.ru.nl/B.Jacobs/CLT/bookinfo.html} \url{http://www.math.mcgill.ca/rags/jacobs.html} \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020jacobs.pdf} \ssk See: \url{http://angg.twu.net/LATEX/2020favorite-conventions.pdf} \url{http://angg.twu.net/math-b.html\#favorite-conventions} I wrote these notes mostly to test if the conventions above are good enough. } % «4.8._quo-types-cat» (to ".4.8._quo-types-cat") % (find-books "__cats/__cats.el" "jacobs") % (find-jacobspage (+ 19 290) "4.8. Quotient types, categorically") % (find-jacobspage (+ 19 291) "is mapped to the composite") \section*{4.8. Quotient types, categorically} (Page 291): \ssk A morphism $u:I→J$ in $\bbB$ is mapped to the composite % $$\Eq(I) = \Eq_I⊤(I) \diagxyto/->/<250> (u{×}u)^*\Eq_J⊤(J) \diagxyto/->/<250> \Eq_J⊤(J) = \Eq(J) $$ % where the first part of this map is obtained by transposing the following composite across the adjunction $\Eq_I ⊣ δ(I)^*$: % $$⊤(I) ≅ u^*⊤(J) \diagxyto/->/<250>^{u^*η_J} u^*δ(J)^*\Eq_J⊤(J) ≅ δ(I)^*(u{×}u)^*\Eq_J⊤(J) $$ Here is a diagram that explains that construction. Two morphisms in the construction above are morphisms in $\bbE$ that are not-vertical; I drew them as `$\diagxyto/-->/<250>$'s. %D diagram Eq(u)-Jacobs %D 2Dx 100 +70 +75 +70 %D 2D 100 B0 <==> B0' <============= B1 %D 2D -\\ - -\\ %D 2D | \\ | | \\ %D 2D v \\ v v \\ %D 2D +20 B2 <\\> B2' <============= B3 \\ %D 2D /\ \/ /\ \/ %D 2D +15 \\ B4 \\ B5 %D 2D \\ - \\ - %D 2D \\ | \\| %D 2D \\v \v %D 2D +20 B6 <===================== B7 %D 2D %D 2D +15 A0 |---------------------> A1 %D 2D |-> |-> %D 2D +35 A2 |--------------------> A3 %D 2D %D (( %D B0 .tex= ⊤(I) B0' .tex= u^*⊤(J) B1 .tex= ⊤(J) %D B2 .tex= δ(I)^*(u{×}u)^*\Eq_J⊤(J) B3 .tex= δ^*(J)\Eq_J⊤(J) %D B2' .tex= u^*δ(J)^*\Eq_J⊤(J) %D B4 .tex= \Eq_I⊤(I) B5 .tex= \Eq_J⊤(J) %D B6 .tex= (u{×}u)^*\Eq_J⊤(J) B7 .tex= \Eq_J⊤(J) %D B0 B0' <-> B0' B1 <-| %D B0 B2 -> B0' B2' -> .plabel= l u^*η_J B1 B3 -> .plabel= l η_J %D B2 B2' <-> B2' B3 <-| %D B0 B4 |-> B1 B5 |-> %D B2 B6 <-| B3 B7 <-| %D B6 B7 <-| B5 B7 -> .plabel= r \id %D B4 B6 -> %D B0 B2' harrownodes nil 20 nil <-| %D B0' B2' midpoint B1 B3 midpoint harrownodes nil 20 nil <-| %D B0 B2 midpoint B4 B6 midpoint dharrownodes nil 20 nil |-> %D B1 B3 midpoint B5 B7 midpoint dharrownodes nil 20 nil <-| %D %D B4 B5 --> .plabel= b \Eq(u) %D B6 B7 --> sl^^ %D )) %D (( A0 .tex= I A1 .tex= J %D A2 .tex= I{×}I A3 .tex= J{×}J %D A0 A1 -> .plabel= b u %D A0 A2 -> .plabel= l δ(I) %D A1 A3 -> .plabel= r δ(J) %D A2 A3 -> .plabel= b u{×}u %D A0 relplace 27 7 \pbsymbol{7} %D )) %D enddiagram % $$\pu \scalebox{0.9}{$ \diag{Eq(u)-Jacobs} $} $$ \newpage % ____ _ % / ___|___ _ __ ___ _ __ _ __ ___ __ _| |_ ___ % | | / _ \| '_ ` _ \| '_ \| '__| / __/ _` | __/ __| % | |__| (_) | | | | | | |_) | | | (_| (_| | |_\__ \ % \____\___/|_| |_| |_| .__/|_| \___\__,_|\__|___/ % |_| % % «10.4.2._compr-cats» (to ".10.4.2._compr-cats") % (jacp 2 "10.4.2._compr-cats") % (jac "10.4.2._compr-cats") \section*{10.4.2. Comprehension categories} % (find-books "__cats/__cats.el" "jacobs") % (find-jacobspage (+ 19 613) "10.4.2. Definition. A comprehension category") % (find-jacobspage (+ 19 614) "(ii) the simple comprehension category") %D diagram ?? %D 2Dx 100 +25 +25 +50 +25 +25 %D 2D 100 A0 B0 %D 2D / | / | %D 2D +25 A1 | B1 | %D 2D / \ | / \ | %D 2D +25 A2 A3 B2 ---- B3 %D 2D %D ren A0 A1 A2 A3 ==> \bbE \bbB^→ \bbB \bbB %D ren B0 B1 B2 B3 ==> \ov{B}≡\psmdown{A×B}{A} \psmdown{A×B}{A} A×B A %D %D (( A0 A1 -> .plabel= m \Pts %D A1 A2 -> .plabel= m \dom %D A1 A3 -> .plabel= m \cod %D A0 A3 -> .plabel= r p:=\cod∘\Pts %D A0 A2 -> .slide= -15pt .plabel= l \{-\}:=\dom∘\Pts %D %D B0 B1 |-> %D B1 B2 |-> %D B1 B3 |-> %D B0 B3 |-> %D B2 B3 -> .plabel= a π_{\ov{B}} %D )) %D enddiagram %D $$\pu \diag{??} $$ %D diagram ?? %D 2Dx 100 +30 +30 +30 +30 +30 +30 %D 2D 100 A1 B1 %D 2D %D 2D +30 A2 A3 A5 B2 B3 B5 %D 2D %D 2D +30 A6 A7 B6 B7 %D 2D %D 2D +30 C1 D1 %D 2D %D 2D +30 C2 C3 C5 D2 D3 D5 %D 2D %D 2D +30 C6 C7 D6 D7 %D 2D %D ren A1 A2 A3 A5 A6 A7 ==> X \{X\} pX Y \{Y\} pY %D ren B1 B2 B3 ==> \ov{B}≡\psmdown{A×B}{A} A×B A %D ren B5 B6 B7 ==> \ov{D}≡\psmdown{C×D}{C} C×D C %D ren D1 D2 D3 ==> \ov{AC}≡\psmdown{A×C}{A} A×C A %D ren D5 D6 D7 ==> \ov{BC}≡\psmdown{B×C}{B} B×C B %D %D (( A1 A2 |-> %D A1 A3 |-> %D A2 A3 -> .plabel= a π_X %D A5 A6 |-> %D A5 A7 |-> %D A6 A7 -> .plabel= a π_Y %D %D A1 A5 -> .plabel= a f %D A2 A6 -> .plabel= l \{f\} %D A3 A7 -> .PLABEL= ^<>(0.15) pf %D )) %D (( B1 B2 |-> %D B1 B3 |-> %D B2 B3 -> .plabel= a π_{\ov{B}} %D B5 B6 |-> %D B5 B7 |-> %D B6 B7 -> .plabel= a π_{\ov{D}} %D %D B1 B5 -> %D B2 B6 -> %D B3 B7 -> %D )) %D (( D1 D2 |-> %D D1 D3 |-> %D D2 D3 -> .plabel= a π_{\ov{B}} %D D5 D6 |-> %D D5 D7 |-> %D D6 D7 -> .plabel= a π_{\ov{D}} %D %D D1 D5 -> .PLABEL= ^<>(0.7) (◻)\;f %D D2 D6 -> .plabel= l \{f\} %D D3 D7 -> .PLABEL= _<>(0.15) pf %D %D D2 relplace 16 7 \pbsymbol{7} %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage From this point on all the diagrams are from notes that I wrote in 2008, using almost only the ``downcased notation'' from \cite[sec.3]{IDARCT}... {\sl TODO:} create diagrams similar to these using the notation from Jacobs! See \cite{FavC}, section 2, conventions (COT) and (CNSh). % (find-angg ".emacs" "idarct-preprint") % (find-idarctpage 3 "3. Downcased Types") % (find-idarcttext 3 "3. Downcased Types") % (favp 8 "the-conventions") % (fav "the-conventions") \bsk % -------------------- % «ccw1» (to ".ccw1") % (s "Comprehension categories with unit" "ccw1") \myslide {Comprehension categories with unit} {ccw1} \def\EtoBto{\mathbb{E} \to \mathbb{B}^\to} % (find-jacobspage (+ 19 616) "10.4.7." "comprehension category with unit") Jacobs, 10.4.7 (p.616): A fibration $p: \mathbb{E} \to \mathbb{B}$ with a terminal object functor $1: \mathbb{B} \to \mathbb{E}$ (where we know by lemma 1.8.8 that $p \dashv 1$ and that $\eta_I = \id$) is {\sl comprehension category with unit} if 1 has a right adjoint. We call this right adjoint $\{-\}$. %D diagram ccwu-adjs-dnc %D 2Dx 100 +30 +30 %D 2D 100 a0 |---> a1 |---> a2 %D 2D || ^ /\ ^ || %D 2D || | || | || %D 2D \/ v || v \/ %D 2D +30 a3 |---> a4 |---> a5 %D 2D %D (( a0 .tex= \s[a|b] a1 .tex= \s[c|*] a2 .tex= \s[d|e] %D a3 .tex= a a4 .tex= c a5 .tex= d,e %D @ 0 @ 1 |-> @ 1 @ 2 |-> %D @ 0 @ 3 => .plabel= l p %D @ 1 @ 4 <= .plabel= r 1 %D @ 2 @ 5 => .plabel= r \{-\} %D @ 0 @ 4 varrownodes nil 20 nil <-> %D @ 1 @ 5 varrownodes nil 20 nil <-> %D @ 3 @ 4 |-> @ 4 @ 5 |-> %D )) %D enddiagram %D $$\diag{ccwu-adjs-dnc}$$ \msk Jacobs, 10.4.7 (p.616): Definition of the functor $\EtoBto$: its action on objects is $X \mto pε_X$. %D diagram ccwu-p %D 2Dx 100 +30 +30 +40 +30 +30 %D 2D 100 a0 |------------> a2 b0 |------------> b2 %D 2D /\ ^ // || /\ ^ // || %D 2D || | // || || | // || %D 2D || - \/ \/ || - \/ \/ %D 2D +30 a3 |---> a4 |---> a5 b3 |---> b4 |---> b5 %D 2D %D (( a0 .tex= 1\{X\} a2 .tex= X %D a3 .tex= \{X\} a4 .tex= \{X\} a5 .tex= pX %D a0 a2 -> .plabel= a ε_X %D a3 a4 -> .plabel= b \id %D a4 a5 -> .plabel= b pε_X %D a0 a3 <-| a2 a4 |-> a2 a5 |-> %D a0 a4 varrownodes nil 20 nil <-| %D )) %D (( b0 .tex= \s[d,e|*] b2 .tex= \s[d|e] %D b3 .tex= d,e b4 .tex= d,e b5 .tex= d %D b0 b2 |-> b3 b4 |-> b4 b5 |-> %D b0 b3 <= b2 b4 => b2 b5 => %D b0 b4 varrownodes nil 20 nil <-| %D )) %D enddiagram $$\diag{ccwu-p}$$ % (fooi "|->" "->" "<-|" "<-" "=>" "|->" "<=" "<-|") % (fooi "|->" "=>" "<-|" "<=" "->" "|->" "<-" "<-|") \msk % (find-dn4exfile "eedemo2.tex") %D diagram ccwu-pb %D 2Dx 100 +30 +5 +15 +15 +15 +30 %D 2D 100 a0 %D 2D /\/ %D 2D || \ %D 2D || v %D 2D +25 a1 |--> a2 a3 %D 2D - - ||/ %D 2D \ \ || \ %D 2D v v\/ \ %D 2D +25 a4 |---> a5 \ %D 2D - - v %D 2D +25 a6 |-> a7 |------------------> a8 %D 2D /\ /\ \ // || %D 2D || || \ // || %D 2D || || v \/ \/ %D 2D +25 a9 |-> a10 |---------> a11 |-> a12 %D 2D %D (( a0 .tex= 1I %D a1 .tex= \{1I\} a2 .tex= I a3 .tex= X %D a4 .tex= \{X\} a5 .tex= pX %D a6 .tex= 1I a7 .tex= 1\{Y\} a8 .tex= Y %D a9 .tex= I a10 .tex= \{Y\} a11 .tex= \{Y\} a12 .tex= pY %D a0 a1 |-> a0 a2 <-| %D a3 a4 |-> a3 a5 |-> %D a6 a9 <-| a7 a10 <-| a8 a11 |-> a8 a12 |-> %D a1 a2 -> sl_ .plabel= b π_{1I} %D a1 a2 <- sl^ .plabel= a \eta_I %D a1 a4 -> .plabel= l \{g\} %D a2 a4 -> .plabel= m g^\vee %D a0 a3 -> .plabel= a g %D a2 a5 -> .plabel= m u %D a4 a5 -> .plabel= b π_X %D a3 a8 -> .PLABEL= ^(0.33) f %D a4 a11 -> .PLABEL= ^(0.33) \{f\} %D a5 a12 -> .PLABEL= ^(0.33) pf %D a6 a7 -> .plabel= b 1v %D a7 a8 -> .PLABEL= _(0.5) ε_Y %D a9 a10 -> .plabel= b v %D a10 a11 -> .plabel= b \id %D a11 a12 -> .plabel= b π_Y %D )) %D enddiagram %D diagram ccwu-pb-dnc %D 2Dx 100 +30 -15 +15 +15 +15 +30 %D 2D 100 a0 %D 2D /\/ %D 2D || \ %D 2D || v %D 2D +25 a1 |--> a2 a3 %D 2D - - ||/ %D 2D \ \ || \ %D 2D v v\/ \ %D 2D +25 a4 |---> a5 \ %D 2D - - v %D 2D +25 a6 |-> a7 |------------------> a8 %D 2D /\ /\ \ // || %D 2D || || \ // || %D 2D || || v \/ \/ %D 2D +25 a9 |-> a10 |---------> a11 |-> a12 %D 2D %D (( a0 .tex= \s[i|*] %D a1 .tex= i,* a2 .tex= i a3 .tex= \s[a|b] %D a4 .tex= a,b a5 .tex= a %D a6 .tex= \s[i|*] a7 .tex= \s[c,d|*] a8 .tex= \s[c|d] %D a9 .tex= i a10 .tex= c,d a11 .tex= c,d a12 .tex= c %D a0 a2 <= a0 a1 => %D a3 a4 => a3 a5 => %D a6 a9 <= a7 a10 <= a8 a11 => a8 a12 => %D a0 a3 |-> %D a1 a2 <-> a1 a4 |-> a2 a4 |-> %D a2 a5 |-> a3 a8 |-> .plabel= a {◻} a4 a5 |-> %D a4 a11 |-> a5 a12 |-> %D a6 a7 |-> a7 a8 |-> %D a9 a10 |-> a10 a11 |-> a11 a12 |-> %D )) %D enddiagram The functor $\EtoBto$ is a comprehension category, i.e., it takes cartesian morphisms to pullback squares. We want to check that the image of a cartesian morphism is a pullback. Given two maps $i \mto a$ and $i \mto c,d$ such that $a \mto c$ is well-defined, we need to construct a mediating map $i \mto a,b$. % $$\diag{ccwu-pb} \qquad \diag{ccwu-pb-dnc} $$ \newpage % -------------------- % «ccw1-bij» (to ".ccw1-bij") % (s "Comprehension categories with unit: a bijection" "ccw1-bij") \myslide {Comprehension categories with unit: a bijection} {ccw1-bij} Jacobs, 10.4.9 (i): In a CCw1, pack a morphism $u: I \to J$ in the base category, and an object $Y$ over $J$. Then the vertical morphisms $1I \to u^*Y$ are in bijection with morphisms from $u$ to $π_Y$ in $\mathbb{B}/J$. %D diagram 1049 %D 2Dx 100 +30 +30 +30 +30 +30 %D 2D 100 a0 |-> a1 b0 |-> b1 %D 2D /\ || / /\ || / %D 2D || || \ || || \ %D 2D || \/ v || \/ v %D 2D +30 a2 |-> a3 a4 b2 |-> b3 b4 %D 2D / / || / / || %D 2D \ \ || \ \ || %D 2D v v \/ v v \/ %D 2D +30 a5 |-> a6 b5 |-> b6 %D 2D %D (( a0 .tex= 1I a1 .tex= u^*Y %D a2 .tex= I a3 .tex= I a4 .tex= Y %D a5 .tex= \{Y\} a6 .tex= J %D a0 a1 -> %D a0 a2 <-| a0 a4 -> a1 a3 |-> a1 a4 -> sl^^ .plabel= a {◻} a1 a4 <-| %D a2 a3 -> .plabel= b \id a2 a5 -> a3 a6 -> .PLABEL= ^(0.3) u a4 a5 |-> a4 a6 |-> %D a5 a6 -> .plabel= b π_Y %D )) %D (( b0 .tex= \s[a,b|*] b1 .tex= \s[a,b|c] %D b2 .tex= a,b b3 .tex= a,b b4 .tex= \s[a|c] %D b5 .tex= a,c b6 .tex= a %D b0 b1 |-> %D b0 b2 <= b0 b4 |-> b1 b3 => b1 b4 |-> sl^ .plabel= a {◻} b1 b4 <= sl_ %D b2 b3 |-> b2 b5 |-> b3 b6 |-> b4 b5 => b4 b6 => %D b5 b6 |-> %D )) %D enddiagram %D $$\diag{1049}$$ \newpage % -------------------- % «ccw1-bigbij» (to ".ccw1-bigbij") % (s "Comprehension categories with unit: big bijection" "ccw1-bigbij") \myslide {Comprehension categories with unit: big bijection} {ccw1-bigbij} Jacobs, 10.4.9 (ii): % \widemtos %D diagram 10.4.9-ii %D 2Dx 100 +15 +45 +40 +45 +15 +45 %D 2D %D 2D 100 a0 <-> a1 <========= a2 %D 2D - - - - %D 2D | / / | %D 2D v v v v %D 2D +30 a3 ==== =====> a4 <-> a5 %D 2D /\ / \ %D 2D \\ \\ %D 2D \\ \\ %D 2D +20 a6 ============== => a7 %D 2D %D 2D +15 a8 %D 2D / \ %D 2D \\ %D 2D \\ %D 2D +20 b0 |--- ------------> b1 a9 %D 2D -- - - %D 2D | \ | \ %D 2D | v | v %D 2D +20 | b2 |------------- -> b3 %D 2D v |- > v |- > %D 2D +20 b4 b5 %D 2D %D (( a0 .tex= 1L a1 .tex= (Qu^*A)^*1I a2 .tex= 1I %D a3 .tex= u'^*X a4 .tex= \prod_{u^*A}u'^*X a5 .tex= u^*\prod_{A}X %D a6 .tex= X a7 .tex= \prod_{A}X %D a8 .tex= u^*A a9 .tex= A %D b0 .tex= L b1 .tex= I %D b2 .tex= J b3 .tex= K %D b4 .tex= \{X\} b5 .tex= \{\prod_{A}X\} %D a0 a1 <-> a1 a2 <-| %D a0 a3 -> a1 a3 -> a2 a4 -> a2 a5 -> %D a3 a4 |-> a4 a5 <-> %D a3 a6 <-| a5 a7 <-| %D a6 a7 |-> %D a8 a9 <-| %D b0 b1 -> .plabel= a Qu^*A %D b0 b2 -> .PLABEL= ^(0.6) u'=QA^*u b1 b3 -> .plabel= r u %D b2 b3 -> .plabel= a QA %D b0 b4 -> b4 b2 -> .plabel= r π_X b1 b5 -> b5 b3 -> .plabel= r π_{\prod_{A}X} %D )) %D enddiagram %D $$\diag{10.4.9-ii}$$ \bsk $a,c; b \vdash d$ $a; b \vdash c \mto d$ %D diagram 10.4.9-ii-dnc %D 2Dx 100 +15 +45 +40 +45 +15 +45 %D 2D %D 2D 100 a0 <-> a1 <========= a2 %D 2D - - - - %D 2D | / / | %D 2D v v v v %D 2D +30 a3 ==== =====> a4 <-> a5 %D 2D /\ / \ %D 2D \\ \\ %D 2D \\ \\ %D 2D +20 a6 ============== => a7 %D 2D %D 2D +15 a8 %D 2D / \ %D 2D \\ %D 2D \\ %D 2D +20 b0 |--- ------------> b1 a9 %D 2D -- - - %D 2D | \ | \ %D 2D | v | v %D 2D +20 | b2 |------------- -> b3 %D 2D v |- > v |- > %D 2D +20 b4 b5 %D 2D %D (( a0 .tex= \s[a,b,c|*] a1 .tex= \s[a,b,c|*] a2 .tex= \s[a,b|*] %D a3 .tex= \s[a,b,c|d] a4 .tex= \s[a,b|{c|->d}] a5 .tex= \s[a,b|{c|->d}] %D a6 .tex= \s[a,c|d] a7 .tex= \s[a|{c|->d}] %D a8 .tex= \s[a,b|c] a9 .tex= \s[a|c] %D b0 .tex= a,b,c b1 .tex= a,b %D b2 .tex= a,c b3 .tex= a %D b4 .tex= a,c,d b5 .tex= a,(c|->d) %D a0 a1 <-> a1 a2 <= %D a0 a3 |-> .plabel= l a,b,c|-d %D a1 a3 |-> a2 a4 |-> %D a2 a5 |-> .plabel= r a,b|-c|->d %D a3 a4 => a4 a5 <-> %D a3 a6 <= a5 a7 <= %D a6 a7 => %D a8 a9 <= %D b0 b1 |-> %D b0 b2 |-> b1 b3 |-> %D b2 b3 |-> %D b0 b4 |-> b4 b2 |-> b1 b5 |-> b5 b3 |-> %D )) %D enddiagram %D $$\diag{10.4.9-ii-dnc}$$ \newpage % -------------------- % «ccw1-three-rules» (to ".ccw1-three-rules") % (s "Comprehension categories with unit: three rules" "ccw1-three-rules") \myslide {Comprehension categories with unit: three rules} {ccw1-three-rules} Jacobs, 10.3.3: % (find-dn4file "diagxy.tex" "\\newdir") % \newdir^{ (}{{ }*!/-.5em/@^{(}}% \newdir^{) }{{ }*!/.5em/@^{)}}% %D diagram sumI %D 2Dx 100 +30 +30 %D 2D 100 a0 / %D 2D // || /\ \ %D 2D // || \\ v %D 2D \/ \/ \\ %D 2D +30 a2 |--> a3 a1 %D 2D / / // || %D 2D \ // || %D 2D v \/ v \/ %D 2D +30 a4 |--> a5 %D 2D %D (( a0 .tex= \s[a,b|c] a1 .tex= \s[a|b,c] %D a2 .tex= a,b,c a3 .tex= a,b %D a4 .tex= a,(b,c) a5 .tex= a %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{◻} %D @ 0 @ 2 => @ 0 @ 3 => @ 1 @ 4 => @ 1 @ 5 => %D @ 2 @ 3 |-> @ 2 @ 4 |-> @ 3 @ 5 |-> @ 4 @ 5 |-> %D )) %D enddiagram %D diagram sumE+ %D 2Dx 100 +30 +15 +30 %D 2D 100 a0 |------> a1 %D 2D / / %D 2D \ \ %D 2D v v %D 2D +30 a2 |------> a3 %D 2D %D (( a0 .tex= a,b,c,d a1 .tex= a,b,c %D a2 .tex= a,(b,c),d a3 .tex= a,(b,c) %D @ 0 @ 1 |-> sl_ @ 0 @ 1 <-' sl^ %D @ 0 @ 2 <-> @ 1 @ 3 <-> %D @ 2 @ 3 |-> sl_ @ 2 @ 3 <-' sl^ %D @ 0 relplace 15 7 \pbsymbol{7} %D )) %D enddiagram %D diagram sumE- %D 2Dx 100 +30 +40 +35 %D 2D 100 {a,b,c} |----------\ %D 2D - |-> v %D 2D +20 | a,b,c,d |--> a,(b,c),d |--> a,d %D 2D \ - _| - _| - %D 2D \ | | | %D 2D v v v v %D 2D +30 a,b,c |----> a,(b,c) |----> a %D 2D %D (( {a,b,c} # 0 %D a,b,c,d a,(b,c),d a,d # 1 2 3 %D a,b,c a,(b,c) a # 4 5 6 %D @ 0 @ 4 |-> @ 0 @ 1 |-> @ 0 @ 2 |-> %D @ 1 @ 2 |-> @ 2 @ 3 |-> %D @ 1 @ 4 |-> @ 2 @ 5 |-> @ 3 @ 6 |-> %D @ 4 @ 5 |-> @ 5 @ 6 |-> %D @ 1 relplace 5 5 \pbsymbol{7} @ 2 relplace 5 5 \pbsymbol{7} %D )) %D enddiagram %: %: a,b|-C %: ------------Σ𝐫I %: a;b,c|-(b,c) %: %: ^sumI %: %: %: a|-D a,b,c|-d %: --------------Σ𝐫E^- %: a,(b,c)|-d %: %: ^sumE- %: %: %: a,(b,c)|-D a,b,c|-d %: ---------------------Σ𝐫E^+ %: a,(b,c)|-d %: %: ^sumE+ %: The categorical interpretation of the rules for dependent sums: $$\begin{array}{cc} \cded{sumI} & \cdiag{sumI} \\ \\ \cded{sumE+} & \cdiag{sumE+} \\ \\ \cded{sumE-} & \cdiag{sumE-} \\ \end{array} $$ (Oops, the diagram for $Σ𝐫E^-$ is wrong) \newpage % -------------------- % «ccompc-prodI-and-prodE» (to ".ccompc-prodI-and-prodE") % (s "Interpreting $Π𝐫I$ and $Π𝐫E$ in a CCompC" "ccompc-prodI-and-prodE") \myslide {Interpreting $Π𝐫I$ and $Π𝐫E$ in a CCompC} {ccompc-prodI-and-prodE} (Jacobs, 10.5.3) % std->dnc: (fooi ">->" "`->" "|->" "=>" "<-|" "<=" "->" "|->" "<-" "<-|") % dnc->std: (fooi "`->" ">->" "|->" "->" "<-|" "<-" "=>" "|->" "<=" "<-|") %D diagram 1053-prodI %D 2Dx 100 +30 +40 +35 %D 2D 100 a0 <== a1 b0 <== b1 %D 2D - - - - %D 2D | |-> | | |-> | %D 2D v v v v %D 2D +30 a2 ==> a3 b2 ==> b3 %D 2D %D 2D +25 a4 b4 %D 2D //|| //|| %D 2D // || // || %D 2D \/ \/ \/ \/ %D 2D +25 a5 |-> a6 b5 |-> b6 %D 2D %D (( a0 .tex= 1\{X\} a1 .tex= 1I a2 .tex= Y a3 .tex= Π_XY %D a4 .tex= X a5 .tex= \{X\} a6 .tex= I %D a0 a1 <-| %D a0 a2 -> .plabel= l f %D a1 a3 -> .plabel= r λ_Xf %D a2 a3 |-> %D a0 a3 harrownodes nil 20 nil -> %D a4 a5 |-> a4 a6 |-> a5 a6 -> .plabel= b π_X %D )) %D (( b0 .tex= \s[a,b|*] b1 .tex= \s[a|*] %D b2 .tex= \s[a,b|c] b3 .tex= \s[a|b{|->c}] %D b4 .tex= \s[a|b] b5 .tex= a,b b6 .tex= a %D b0 b1 <= %D b0 b2 |-> .plabel= l a,b|-c %D b1 b3 |-> .plabel= r a|-(b|->c) %D b2 b3 => %D b0 b3 harrownodes nil 20 nil |-> %D b4 b5 => b4 b6 => b5 b6 |-> %D )) %D enddiagram %D $$\defΣ{\coprod} \defΠ{\prod} \diag{1053-prodI} $$ %D diagram 1053-prodE %D 2Dx 100 +35 +35 +35 +35 +35 %D 2D 100 a0 <== a1 <== a2 c0 <== c1 <== c2 %D 2D - - - - - - %D 2D | <-| | <-| | | <-| | <-| | %D 2D v v v v v v %D 2D +30 a3 <== a4 ==> a5 c3 <== c4 ==> c5 %D 2D %D 2D +25 b0 |--------> b2 d0 |--------> d2 %D 2D /\ // || /\ // || %D 2D || // || || // || %D 2D || \/ || || \/ || %D 2D +25 b3 |-> b4 |-> b5 d3 |-> d4 |-> d5 %D 2D %D (( a0 .tex= 1I a1 .tex= π_X^*1I a2 .tex= 1I %D a3 .tex= h^{\vee*}Y a4 .tex= Y a5 .tex= Π_XY %D b0 .tex= 1I b2 .tex= X %D b3 .tex= I b4 .tex= \{X\} b5 .tex= I %D a0 a1 <-| a1 a2 <-| %D a0 a3 -> .plabel= l gh %D a1 a4 -> .plabel= m g^\wedge %D a2 a5 -> .plabel= r g %D a0 a4 harrownodes nil 20 nil <-| %D a1 a5 harrownodes nil 20 nil <-| %D a3 a4 <-| a4 a5 |-> %D b0 b2 -> .plabel= a h %D b0 b3 <-| b2 b4 |-> b2 b5 |-> %D b0 b4 varrownodes nil 17 nil |-> %D b3 b4 >-> .plabel= b h^\vee b4 b5 -> .plabel= b π_X %D )) %D (( c0 .tex= \s[a|*] c1 .tex= \s[a,b|*] c2 .tex= \s[a|*] %D c3 .tex= \s[a|c] c4 .tex= \s[a,b|c] c5 .tex= \s[a|b{|->}c] %D d0 .tex= \s[a|*] d2 .tex= \s[a|b] %D d3 .tex= a d4 .tex= a,b d5 .tex= a %D c0 c1 <= c1 c2 <= %D c0 c3 |-> .plabel= l a|-c %D c1 c4 |-> %D c2 c5 |-> .plabel= r a|-(b|->c) %D c0 c4 harrownodes nil 20 nil <-| %D c1 c5 harrownodes nil 20 nil <-| %D c3 c4 <= c4 c5 => %D d0 d2 |-> .plabel= a a|-b %D d0 d3 <= d2 d4 => d2 d5 => %D d0 d4 varrownodes nil 17 nil |-> %D d3 d4 `-> d4 d5 |-> %D )) %D enddiagram %D $$\diag{1053-prodE}$$ In the top left vertex of the diagram for $Π𝐫E$ we have omitted an iso to keep the diagram shorter: $1I \cong h^{\vee*}π_X^*1I$. \newpage % -------------------- % «ccompc-sumI» (to ".ccompc-sumI") % (s "Interpreting $Σ𝐫I$ in a CCompC" "ccompc-sumI") \myslide {Interpreting $Σ𝐫I$ in a CCompC} {ccompc-sumI} (Jacobs, 10.5.3) %D diagram 1053-sumI %D 2Dx 100 +35 +35 +35 +35 +35 %D 2D 100 a* c* %D 2D - - %D 2D | | %D 2D v v %D 2D +30 a0 <== a1 ==> a2 c0 <== c1 ==> c2 %D 2D - - - - - - %D 2D | <-| | <-| | | <-| | <-| | %D 2D v v v v v v %D 2D +30 a3 <== a4 <== a5 c3 <== c4 <== c5 %D 2D %D 2D +25 b0 |--------> b2 d0 |--------> d2 %D 2D /\ // || /\ // || %D 2D || // || || // || %D 2D || \/ || || \/ || %D 2D +25 b3 |-> b4 |-> b5 d3 |-> d4 |-> d5 %D 2D %D (( a* .tex= 1I %D a0 .tex= f^{\vee*}X a1 .tex= Y a2 .tex= Σ_XY %D a3 .tex= Σ_XY a4 .tex= π_X^*Σ_XY a5 .tex= Σ_XY %D b0 .tex= 1I b2 .tex= X %D b3 .tex= I b4 .tex= \{X\} b5 .tex= I %D a* a0 -> .plabel= r g %D a* a3 -> .slide= -15pt .PLABEL= _(0.25) \ang{f,g} %D a0 a1 <-| a1 a2 |-> %D a0 a3 -> %D a1 a4 -> %D a2 a5 -> .plabel= r \id %D a0 a4 harrownodes nil 20 nil <- %D a1 a5 harrownodes nil 20 nil <- %D a3 a4 <-| a4 a5 <-| %D b0 b2 -> .plabel= a f %D b0 b3 <-| b2 b4 |-> b2 b5 |-> %D b0 b4 varrownodes nil 17 nil -> %D b3 b4 >-> .plabel= b f^\vee b4 b5 -> .plabel= b π_X %D )) %D (( c* .tex= \s[a|*] %D c0 .tex= \s[a|c] c1 .tex= \s[a,b|c] c2 .tex= \s[a|b,c] %D c3 .tex= \s[a|b,c] c4 .tex= \s[a,b|b,c] c5 .tex= \s[a|b,c] %D d0 .tex= \s[a|*] d2 .tex= \s[a|b] %D d3 .tex= a d4 .tex= a,b d5 .tex= a %D c* c0 |-> .plabel= r a|-c %D c* c3 |-> .slide= -12.5pt .PLABEL= _(0.25) a|-(b,c) %D c0 c1 <= c1 c2 => %D c0 c3 |-> %D c1 c4 |-> %D c2 c5 |-> %D c0 c4 harrownodes nil 20 nil <-| %D c1 c5 harrownodes nil 20 nil <-| %D c3 c4 <= c4 c5 <= %D d0 d2 |-> .plabel= a a|-b %D d0 d3 <= d2 d4 => d2 d5 => %D d0 d4 varrownodes nil 17 nil |-> %D d3 d4 `-> d4 d5 |-> %D )) %D enddiagram %D $$\diag{1053-sumI}$$ \newpage % -------------------- % «ccompc-sumE+» (to ".ccompc-sumE+") % (s "Interpreting $Σ𝐫E^+$ in a CCompC" "ccompc-sumE+") \myslide {Interpreting $Σ𝐫E^+$ in a CCompC} {ccompc-sumE+} (Jacobs, 10.5.3) %D diagram 1053-strongsumI-dnc %D 2Dx 100 +25 +25 +25 +25 +25 +25 +25 +50 %D 2D %D 2D 100 a0 |----------> a2 a3 a4 %D 2D /\ // || // || // || %D 2D || // || // || // || %D 2D || \/ \/ \/ \/ \/ \/ %D 2D +25 b0 |--> b1 |--> b2 |--> b3 |--> b4 %D 2D %D 2D +40 c0 |----------> c2 c3 %D 2D /\ // || // || %D 2D || // || // || %D 2D || \/ \/ \/ \/ %D 2D +25 d0 |--> d1 |--> d2 |--> d3 %D 2D %D (( a0 .tex= \s[a,b,c|*] a2 .tex= \s[a,b,c|d] a3 .tex= \s[a,b|c] a4 .tex= \s[a|b] %D b0 .tex= a,b,c b1 .tex= a,b,c,d b2 .tex= a,b,c b3 .tex= a,b b4 .tex= a %D c0 .tex= \s[a,(b,c)|*] c2 .tex= \s[a,(b,c)|d] c3 .tex= \s[a|b,c] %D d0 .tex= a,(b,c) d1 .tex= a,(b,c),d d2 .tex= a,(b,c) d3 .tex= a %D a0 a2 |-> .plabel= a a,b,c|-d %D a0 b0 <= a2 b1 => a2 b2 => a3 b2 => a3 b3 => a4 b3 => a4 b4 => %D b0 b1 |-> b1 b2 |-> b2 b3 |-> b3 b4 |-> %D c0 c2 |-> .plabel= a a,(b,c)|-d %D c0 d0 <= c2 d1 => c2 d2 => c3 d2 => c3 d3 => %D d0 d1 |-> d1 d2 |-> d2 d3 |-> %D b0 d0 <-> b1 d1 <-> b2 d2 <-> b3 d3 |-> %D a0 c0 <= sl_ a0 c0 |-> sl^ .PLABEL= ^(0.72) {◻} %D a2 c2 <= sl_ a2 c2 |-> sl^ .PLABEL= ^(0.72) {◻} %D a3 c3 => sl_ a3 c3 |-> sl^ .PLABEL= ^(0.72) {𝐫{co}◻} %D b0 relplace 13 7 \pbsymbol{7} %D b1 relplace 13 7 \pbsymbol{7} %D b2 relplace 13 7 \pbsymbol{7} %D )) %D enddiagram %D $$\diag{1053-strongsumI-dnc}$$ %D diagram 1053-strongsumI %D 2Dx 100 +25 +25 +25 +25 +25 +25 +25 +25 %D 2D %D 2D 100 a0 |----------> a2 a3 a4 %D 2D /\ // || // || // || %D 2D || // || // || // || %D 2D || \/ \/ \/ \/ \/ \/ %D 2D +25 b0 |--> b1 |--> b2 |--> b3 |--> b4 %D 2D %D 2D +40 c0 |----------> c2 c3 %D 2D /\ // || // || %D 2D || // || // || %D 2D || \/ \/ \/ \/ %D 2D +25 d0 |--> d1 |--> d2 |--> d3 %D 2D %D (( a0 .tex= 1\{Y\} a2 .tex= \kk^*Z a3 .tex= Y a4 .tex= X %D b0 .tex= \{Y\} b1 .tex= \{\kk^*Z\} b2 .tex= \{Y\} b3 .tex= \{X\} b4 .tex= I %D c0 .tex= 1\{Σ_XY\} c2 .tex= Z c3 .tex= Σ_XY %D d0 .tex= \{Σ_XY\} d1 .tex= \{Z\} d2 .tex= \{Σ_XY\} d3 .tex= I %D a0 a2 -> .plabel= a h %D a0 b0 <-| a2 b1 |-> a2 b2 |-> a3 b2 |-> a3 b3 |-> a4 b3 |-> a4 b4 |-> %D b0 b1 -> .PLABEL= ^(0.6) h^\vee %D b1 b2 -> .plabel= a π_{\kk^*Z} %D b2 b3 -> .plabel= a π_Y %D b3 b4 -> .plabel= a π_X %D c0 c2 -> .plabel= a (\kk^{-1};\overline{h})^\wedge %D c0 d0 <-| c2 d1 |-> c2 d2 |-> c3 d2 |-> c3 d3 |-> %D d0 d1 -> .plabel= b \kk^{-1};\overline{h} %D d1 d2 -> .plabel= b π_Z %D d2 d3 -> .plabel= b π_{\{Σ_XY\}} %D b0 d0 <-> .plabel= a \kk %D b1 d1 <-> %D b2 d2 <-> .plabel= a \kk %D b3 d3 -> .plabel= a π_X %D a0 c0 <-| sl_ a0 c0 -> sl^ .PLABEL= ^(0.72) 1\kk %D a2 c2 <-| sl_ a2 c2 -> sl^ .PLABEL= ^(0.72) {◻} %D a3 c3 |-> sl_ a3 c3 -> sl^ .PLABEL= ^(0.72) {𝐫{co}◻} %D b0 relplace 13 7 \pbsymbol{7} %D b1 relplace 13 7 \pbsymbol{7} %D b2 relplace 13 7 \pbsymbol{7} %D )) %D enddiagram %D $$\defΣ{\coprod} \diag{1053-strongsumI} $$ \printbibliography \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020jacobs veryclean make -f 2019.mk STEM=2020jacobs pdf % Local Variables: % coding: utf-8-unix % ee-tla: "jac" % End: