Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020topostheory.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020topostheory.tex" :end)) % (defun D () (interactive) (find-pdf-page "~/LATEX/2020topostheory.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020topostheory.pdf")) % (defun e () (interactive) (find-LATEX "2020topostheory.tex")) % (defun u () (interactive) (find-latex-upload-links "2020topostheory")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020topostheory.pdf") % (find-sh0 "cp -v ~/LATEX/2020topostheory.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020topostheory.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020topostheory.pdf % file:///tmp/2020topostheory.pdf % file:///tmp/pen/2020topostheory.pdf % http://angg.twu.net/LATEX/2020topostheory.pdf % (find-LATEX "2019.mk") % «.3.13._universal_closure» (to "3.13._universal_closure") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} \usepackage{mathrsfs} % (find-es "tex" "mathrsfs") % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") {\setlength{\parindent}{0em} \footnotesize Notes on Peter Johnstone's ``Topos Theory'' (1977). \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020topostheory.pdf} See: \url{http://angg.twu.net/LATEX/2020favorite-conventions.pdf} \url{http://angg.twu.net/math-b.html\#favorite-conventions} } \bsk \bsk % (find-topostheorypage (+ 24 76) "3.1. Topologies") % (find-toposthepubpage 108 "3.1. Topologies") % (find-toposthepubtext 108 "3.1. Topologies") \def\scrE{\mathscr{E}} \def\scrS{\mathscr{S}} \def\scrSCop{\mathscr{S}} \def\Shv{\mathrm{Shv}} \section*{3. Topologies and Sheaves} \subsection*{3.1. Topologies} We recall that the concept of Grothendieck topos was built up in two distinct steps: from $\scrS$, the "pre-existing" category of sets, we passed to the category $\scrS^{\catC^\op}$ of presheaves on a small category $\catC$, and then to the category $\Shv(\catC, J)$ of sheaves for a Grothendieck topology $J$. In chapter 2, we saw how the first step may be done with $\scrS$ replaced by any elementary topos $\scrE$; our objective in the present chapter is to give a similar generalization of the second step. {\bf 3.11 Definition} (Lawvere-Tierney [LH]). Let be a topos. A topology in $\scrE$ is a morphism $j:Ω→Ω$ such that the diagrams % %D diagram ?? %D 2Dx 100 +20 +20 +20 +50 +20 %D 2D 100 A0 A1 B0 B1 C0 C1 %D 2D %D 2D +20 A2 B2 C2 C3 %D 2D %D ren A0 A1 A2 ==> Ω Ω Ω %D ren B0 B1 B2 ==> Ω Ω Ω %D ren C0 C1 C2 C3 ==> Ω×Ω Ω Ω×Ω Ω %D %D (( A0 A1 -> .plabel= a t %D A0 A2 -> .plabel= l t %D A1 A2 -> .plabel= r j %D %D B0 B1 -> .plabel= a j %D B0 B2 -> .plabel= l j %D B1 B2 -> .plabel= r j %D %D C0 C1 -> .plabel= a ∧ %D C0 C2 -> .plabel= r j×j %D C1 C3 -> .plabel= r j %D C2 C3 -> .plabel= a ∧ %D %D B1 relplace 20 0 \text{and} %D )) %D enddiagram %D $$\pu \diag{??} $$ % commute, where $∧$ is the morphism defined in 1.49(ii). If $j$ is a topology, we write $J \monicto Ω$ for the subobject classified by j, and $Ω_j \monicto Ω$ for the equalizer of $j$ and $1_Ω$ (equivalently, the image of $j$, since $j$ is idempotent). {\bf 3.12 Example.} Let $(\catC, J)$ be a site (cf. 0.32). On comparing 0.32(ii) with 1.12(iii), we see that $J$ is a subobject of $Ω$ in $\scrSCop$; so it has a classifying map $Ω \ton{j} Ω$ in $\scrSCop$. Moreover, it is not hard to prove that a sub-presheaf $J$ of satisfies 0.32(i) and (iii) iff its classifying map $j$ satisfies the conditions of 3.11; so we have a bijection between topologies (in the sense of 3.11) in and Grothendieck topologies on C. Although the overwhelming advantage of the elementary definition of a topology is its conciseness, there is another, more explicitly descriptive, way of defining a topology which has the advantage that it can be interpreted in categories more general than toposes. % «3.13._universal_closure» (to ".3.13._universal_closure") % (tptp 2 "3.13._universal_closure") % (tpt "3.13._universal_closure") {\bf 3.13 Definition.} Let $\scrE$ be any category with pullbacks. A {\sl universal closure operation} on $\scrE$ is defined by specifying, for each $X∈\scrE$, a closure operation (i.e. an increasing, order-preserving, idempotent map) on the poset of subobjects of $X$ --- we denote the closure of $X' \monicto X$ by $\ovl{X'} \monicto X$ --- in such a way that closure commutes with pullback along morphisms of $\scrE$; i.e. given $Y \ton{f} X$, we have $f^*(\ovl{X'}) = \ovl{f^*(X')}$ as subobjects of $Y$. We shall use the words dense and closed with their usual meanings relative to a universal closure operation; i.e. $X' \monicto X$ is dense if $\ovl{X'} ≅ X$, and closed if $\ovl{X'} ≅ X'$. \msk {\bf 3.14 Proposition.} Let be a topos. Then there is a bijection between topologies in $\scrE$ and universal closure operations on $\scrE$. {\sl Proof.} Let $j$ be a topology in $\scrE$. We define the associated ``$j$-closure'' operation as follows; if $X' \monicto X$ has classifying map $X \ton{ϕ} Ω$, then $\ovl{X'}$ is the subobject classified by $jϕ$. The first two diagrams of 3.11 trivially imply that this operation is increasing (i.e. $X'≤\ovl{X'}$) and idempotent; the fact that it preserves order is an easy consequence of the third diagram, since we have $X'≤X''$ iff $X'∩X''≅X'$; and universality is obvious from the form of the definition. Conversely, suppose we are given a universal closure operation on $\scrE$. By applying it to the generic subobject $j: 1 \monicto Ω$, we obtain a subobject $J \monicto Ω$ with classifying map $Ω \ton{j} Ω$; and universality then says that the entire closure operation is induced by $j$ in the above manner. To show that $j$ is a topology, we need to show that any universal closure operation commutes with intersection of subobjects, which will imply the third condition of 3.11; the first two are immediate. But it is clear that $\ovl{X'}$ may be characterized as the unique subobject of $X$ such that is $X' \monicto \ovl{X'}$ dense and is $\ovl{X'} \monicto X$ closed. Now in the diagram % %D diagram ?? %D 2Dx 100 +30 +30 %D 2D 100 A0 A1 %D 2D %D 2D +25 A2 A3 A4 %D 2D %D 2D +25 A5 A6 %D 2D %D ren A0 A1 ==> X' X'∩X'' %D ren A2 A3 A4 ==> \ovl{X'} \ovl{X'}∩X'' X'' %D ren A5 A6 ==> \ovl{X'}∩\ovl{X''} \ovl{X''} %D %D (( A0 A1 <-< %D A0 A2 >-> %D A1 A3 >-> %D A2 A3 <-> %D %D A3 A4 >-> %D A3 A5 >-> %D A4 A6 >-> %D A5 A6 >-> %D )) %D enddiagram %D $$\pu \diag{??} $$ % both squares are pullbacks, from which it follows easily that % $$X'∩X'' \monicto \ovl{X'}∩\ovl{X''}$$ % is dense; and similarly $\ovl{X'}∩\ovl{X''} \monicto X$ is closed. So $\ovl{X'}∩\ovl{X''} ≅ \ovl{X'∩X''}$, as required. %\printbibliography \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020topostheory veryclean make -f 2019.mk STEM=2020topostheory pdf % Local Variables: % coding: utf-8-unix % ee-tla: "tpt" % End: