Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2021sgl.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2021sgl.tex" :end)) % (defun C () (interactive) (find-LATEXSH "lualatex 2021sgl.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2021sgl.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2021sgl.pdf")) % (defun e () (interactive) (find-LATEX "2021sgl.tex")) % (defun u () (interactive) (find-latex-upload-links "2021sgl")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun d0 () (interactive) (find-ebuffer "2021sgl.pdf")) % (code-eec-LATEX "2021sgl") % (find-pdf-page "~/LATEX/2021sgl.pdf") % (find-xournalpp "~/LATEX/2021sgl.pdf") % (find-sh0 "cp -v ~/LATEX/2021sgl.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2021sgl.pdf /tmp/pen/") % file:///home/edrx/LATEX/2021sgl.pdf % file:///tmp/2021sgl.pdf % file:///tmp/pen/2021sgl.pdf % http://angg.twu.net/LATEX/2021sgl.pdf % http://angg.twu.net/LATEX/2021sgl.tex.html % (find-LATEX "2019.mk") % (find-lualatex-links "2021sgl") % «.defs» (to "defs") % «.monics-in-Set^2» (to "monics-in-Set^2") % «.page-26-yoneda» (to "page-26-yoneda") % «.page-32-true-terminal» (to "page-32-true-terminal") % «.pages-35-36-Set^2» (to "pages-35-36-Set^2") % «.page-57-theorem-1» (to "page-57-theorem-1") % «.page-58-theorem-2» (to "page-58-theorem-2") % «.pages-58-59-theorem-2» (to "pages-58-59-theorem-2") % «.page-63-exercise-8» (to "page-63-exercise-8") % «.page-63-exercise-10» (to "page-63-exercise-10") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, %top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot top=1.5cm, bottom=.25cm, left=0.5cm, right=0.5cm, includefoot ]{geometry} \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu % «defs» (to ".defs") \def\drafturl{http://angg.twu.net/LATEX/2021sgl.pdf} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} \def\Nat {\text{Nat}} \def\phop {{}^{\phantom{\op}}} \def\Cop {{\catC^\op}} \def\SetsCop {\Sets^{\catC^\op}} \def\hatC {{\widehat\catC}} \def\OXop {\Opens(X)^\op} \def\SetsOXop{\Sets^{\Opens(X)^\op}} \def\univ {\mathsf{univ}} \def\Spaces {\mathbf{Spaces}} \def\Locales {\mathbf{Locales}} \def\Frames {\mathbf{Frames}} \def\Top {\mathbf{Top}} \def\Bund {\mathbf{Bund}} \def\Loc {\mathrm{Loc}} \def\Ker {\operatorname{Ker}} \def\Pt {\operatorname{pt}} \def\Sh {\operatorname{Sh}} \def\PSh {\operatorname{PSh}} \def\acz {\setlength{\arraycolsep}{0pt}} \def\y {\mathbf{y}} \def\HomC {\Hom_\catC} \def\True {\mathbf{T}} \def\False {\mathbf{F}} \def\goneism{\text{$g_1$ is monic}} \def\gtwoism{\text{$g_2$ is monic}} \def\gonetwoism{\text{$(g_1,g_2)$ is monic}} \def\incgr#1#2{\myvcenter{\includegraphics[#1]{#2}}} \def\scale#1#2{\scalebox{#1}{$#2$}} % (find-LATEX "2020clops-and-tops.tex" "defs") \def\Incs {\mathsf{Incs}} % «monics-in-Set^2» (to ".monics-in-Set^2") \def\und#1#2{\underbrace{#1}_{\textstyle#2}} \def\nound#1#2{#1} Proposition: a morphism $g=(g_1,g_2)$ in $\Set^2$ is a monic if and only if its two components, $g_1$ and $g_2$, are monics in $\Set$. \msk With the right abbreviations, this becomes: $(\gonetwoism) ↔ (\goneism) ∧ (\gtwoism)$ \msk We will use the diagrams below. %D diagram ?? %D 2Dx 100 +30 +25 +50 +40 +30 +15 +30 %D 2D 100 A0 = A1 B0 = B1 C0 = C1 D0 = D1 %D 2D \ | \ | \ | \ | %D 2D +30 A2 B2 C2 D2 %D 2D %D ren A0 A1 A2 ==> ∀A B C %D ren B0 B1 B2 ==> ∀(A_1,A_2) (B_1,B_2) (C_1,C_2) %D ren C0 C1 C2 ==> ∀A_1 B_1 C_1 %D ren D0 D1 D2 ==> ∀A_2 B_2 C_2 %D %D (( A0 A1 -> sl^ .plabel= a ∀f %D A0 A1 -> sl_ .plabel= b ∀f' %D A0 A2 -> sl^ %D A0 A2 -> sl_ %D A1 A2 -> .plabel= r g %D )) %D (( B0 B1 -> sl^ .plabel= a ∀(f_1,f_2) %D B0 B1 -> sl_ .plabel= b ∀(f'_1,f'_2) %D B0 B2 -> sl^ %D B0 B2 -> sl_ %D B1 B2 -> .plabel= r (g_1,g_2) %D )) %D (( C0 C1 -> sl^ .plabel= a ∀f_1 %D C0 C1 -> sl_ .plabel= b ∀f'_1 %D C0 C2 -> sl^ %D C0 C2 -> sl_ %D C1 C2 -> .plabel= r g_1 %D )) %D (( D0 D1 -> sl^ .plabel= a ∀f_2 %D D0 D1 -> sl_ .plabel= b ∀f'_2 %D D0 D2 -> sl^ %D D0 D2 -> sl_ %D D1 D2 -> .plabel= r g_2 %D )) %D enddiagram %D $$\pu \scalebox{0.8}{$ \diag{??} $} $$ \scalebox{0.58}{ \begin{tabular}{l} % [5pt] % Def: $B_1 \xton{g_1} C_1$ is a monic in $\Set$ \\ means $\und{ ∀A_1.\, ∀f_1,f'_1.\, (\und{g_1∘f_1=g_1∘f'_1}{α_1} → \und{f_1=f'_1}{β_1}) }{\text{``$g_1$ is monic''}} $ \\ % [55pt] % Def: $B_2 \xton{g_2} C_2$ is a monic in $\Set$ \\ means $\und{ ∀A_2.\, ∀f_2,f'_2.\, (\und{g_2∘f_2=g_2∘f'_2}{α_2} → \und{f_2=f'_2}{β_2}) }{\text{``$g_2$ is monic''}} $ \\ % [55pt] % Def: $B \xton{g} C$ is a monic in $\Set^2$, \\ i.e, $(B_1,B_2) \xton{(g_1,g_2)} (C_1,C_2)$ is a monic in $\Set^2$, \\ means $∀A.\, ∀f,f'.\, (\und{g∘f=g∘f'}{α} → \und{f=f'}{β})$, \\ i.e., $∀(A_1,A_2).\, ∀(f_1,f_2),(f'_1,f'_2).\, (\und{(g_1,g_2)∘(f_1,f_2)=(g_1,g_2)∘(f'_1,f'_2)}{α_{12}=α} → \und{(f_1,f_2)=(f'_1,f'_2)}{β_{12}=β})$, \\ [10pt] % i.e., $∀(A_1,A_2).\, ∀(f_1,f_2),(f'_1,f'_2).\, (\nound{(g_1∘f_1,g_2∘f_2)=(g_1∘f'_1,g_2∘f'_2)}{α_{12}=α} → \nound{(f_1,f_2)=(f'_1,f'_2)}{β_{12}=β})$, \\ [5pt] % i.e., $\und{ ∀A_1,A_2.\, ∀f_1,f_2, f'_1,f'_2.\, ((\und{g_1∘f_1=g_1∘f'_1}{α_1}) ∧ (\und{g_2∘f_2=g_2∘f'_2}{α_2}) → (\und{f_1=f'_1}{β_1}) ∧ (\und{f_2=f'_2}{β_2})) }{\text{``$(g_1,g_2)$ is monic''}} $. \\ [55pt] % We want to prove this: $(\gonetwoism) ↔ (\goneism) ∧ (\gtwoism)$ \end{tabular} } \newpage Trick 1: make $f_1$ and $f'_1$ identities. We will need $A_1:=B_1$. Trick 2: make $f_2$ and $f'_2$ identities. We will need $A_2:=B_2$. \bsk %D diagram tricks-1-and-2 %D 2Dx 100 +50 +70 +50 %D 2D 100 A0 = A1 B0 = B1 %D 2D \ | => \ | %D 2D +30 A2 B2 %D 2D %D 2D +20 C0 = C1 D0 = D1 %D 2D \ | => \ | %D 2D +30 C2 D2 %D 2D %D ren A0 A1 A2 ==> ∀(A_1,A_2) (B_1,B_2) (C_1,C_2) %D ren B0 B1 B2 ==> (B_1,∀A_2) (B_1,B_2) (C_1,C_2) %D ren C0 C1 C2 ==> ∀(A_1,A_2) (B_1,B_2) (C_1,C_2) %D ren D0 D1 D2 ==> (∀A_1,B_2) (B_1,B_2) (C_1,C_2) %D %D (( A0 A1 -> sl^ .plabel= a ∀(f_1,f_2) %D A0 A1 -> sl_ .plabel= b ∀(f'_1,f'_2) %D A0 A2 -> sl^ %D A0 A2 -> sl_ %D A1 A2 -> .plabel= r (g_1,g_2) %D )) %D (( B0 B1 -> sl^ .plabel= a (\id,∀f_2) %D B0 B1 -> sl_ .plabel= b (\id,∀f'_2) %D B0 B2 -> sl^ %D B0 B2 -> sl_ %D B1 B2 -> .plabel= r (g_1,g_2) %D )) %D (( A0 B2 harrownodes nil 25 nil => %D .plabel= a \sm{A_1:=B_1\;\;\\f_1:=\id_{B_1}\\f'_1:=\id_{B_1}} %D )) %D (( C0 C1 -> sl^ .plabel= a ∀(f_1,f_2) %D C0 C1 -> sl_ .plabel= b ∀(f'_1,f'_2) %D C0 C2 -> sl^ %D C0 C2 -> sl_ %D C1 C2 -> .plabel= r (g_1,g_2) %D )) %D (( D0 D1 -> sl^ .plabel= a (∀f_1,\id) %D D0 D1 -> sl_ .plabel= b (∀f'_1,\id) %D D0 D2 -> sl^ %D D0 D2 -> sl_ %D D1 D2 -> .plabel= r (g_1,g_2) %D )) %D (( C0 D2 harrownodes nil 25 nil => %D .plabel= a \sm{A_2:=B_2\;\;\\f_2:=\id_{B_2}\\f'_2:=\id_{B_2}} %D )) %D enddiagram %D $$\pu \scalebox{0.8}{$ \diag{tricks-1-and-2} $} $$ \newpage If we specialize ``$\gonetwoism$'' by doing $A_1:=B_1$, $f_1:=\id$, $f'_1:=\id$, we get this: % %UB ∀A_1,A_2.\, ∀f_1,f_2, f'_1,f'_2.\, (g_1∘f_1=g_1∘f'_1)∧(g_2∘f_2=g_2∘f'_2)→(f_1=f'_1)∧(f_2=f'_2) %UB --- --- ---- --- ---- ---------------- --- ---- -------- %UB B_1 \id \id \id \id α_2 \id \id β_2 %UB ------- -------- -------- %UB g_1 g_1 \True %UB ---------------- -------------------- %UB \True β_2 %UB ------------------------------------ %UB α_2 %UB ---------------------------------------------------------------------------------------------- %UB ∀A_2.\, ∀f_2,f'_2.\, α_2→β_2 %UB ---------------------------------------------------------------------------------------------- %UB \gtwoism %L %L defub "trick 1" %L $$\pu \scale{0.7}{ \ub{trick 1} } $$ so $(\gonetwoism) → (\gtwoism)$. The proof of $(\gonetwoism) → (\goneism)$ is similar, but with $A_2:=B_2$, $f_2:=\id$, $f'_2:=\id$. So: $(\gonetwoism) → (\goneism) ∧ (\gtwoism)$. \newpage This is a proof of $(\gonetwoism) ← (\goneism) ∧ (\gtwoism)$ in Natural Deduction: %: %: [α_1∧α_2]^1 [A_1,f_1,f'_1]^2 \goneism [α_1∧α_2]^1 [A_2,f_2,f'_2]^2 \gtwoism %: ----------- --------------------------- ----------- -------------------------- %: α_1 α_1→β_1 α_1 α_2→β_2 %: ------------ ------------------ %: β_1 β_2 %: --------------------------------------- %: β_1∧β_2 %: ---------------1 %: α_1∧α_2→β_1∧β_2 %: ----------------------------------------------2 %: ∀A_1,A_2,f_1,f_2,f'_1,f'_2.\,(α_1∧α_2→β_1∧β_2) %: ---------------------------------------------- %: \gonetwoism %: %: ^foo %: \pu $$\scale{0.9}{ \ded{foo} } $$ \newpage % ____ ____ __ % | _ \ __ _ __ _ ___ |___ \ / /_ % | |_) / _` |/ _` |/ _ \ __) | '_ \ % | __/ (_| | (_| | __/ / __/| (_) | % |_| \__,_|\__, |\___| |_____|\___/ % |___/ % % «page-26-yoneda» (to ".page-26-yoneda") % (sglp 6 "page-26-yoneda") % (sgla "page-26-yoneda") % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijk-links (+ 11 26) "This makes y into a functor") % (find-fline "~/LATEX/2021sgl/" "p026-y") %D diagram p26-b %D 2Dx 100 +30 +35 +35 +40 +30 +15 +20 %D 2D 100 A0 - A1 C0 D0 - D1 F0 G0 - G1 %D 2D | | | | | | | / %D 2D +20 A2 - A3 C1 D2 - D3 F1 G2 %D 2D %D 2D +12 B0 E0 %D 2D +8 B1 - B2 E1 - E2 %D 2D %D ren A0 A1 A2 A3 ==> D \y(C)(D) D' \y(C)(D') %D ren B0 B1 B2 ==> \catC \phop\catC^\op \Set %D ren C0 C1 ==> u \y(C)(α)(u) %D %D ren D0 D1 D2 D3 ==> D \HomC(D,C) D' \HomC(D',C) %D ren E0 E1 E2 ==> \catC \phop\catC^\op \Set %D ren F0 F1 ==> u u∘α %D ren G0 G1 G2 ==> D C D' %D %D (( A0 A1 |-> %D A0 A2 <- .plabel= l α %D A1 A3 -> .plabel= r \y(C)(α) %D A2 A3 |-> %D A0 A3 harrownodes nil 20 nil |-> %D B0 place %D B1 B2 -> .plabel= a \y(C) %D C0 C1 |-> %D )) %D (( D0 D1 |-> %D D0 D2 <- .plabel= l α %D D1 D3 -> .plabel= r (∘α) %D D2 D3 |-> %D D0 D3 harrownodes nil 20 nil |-> %D E0 place %D E1 E2 -> .plabel= a \HomC(-,C) %D F0 F1 |-> %D G0 G1 -> .plabel= a u %D G0 G2 <- .plabel= l α %D G2 G1 -> .plabel= r u∘α %D )) %D enddiagram %D %D diagram p26-yoneda %D 2Dx 100 +45 +50 +30 +30 %D 2D 100 A1 %D 2D | %D 2D +20 A2 - A3 E0 F0 G0 %D 2D | | | | | %D 2D +20 A4 - A5 | | | %D 2D | | | %D 2D +20 B0 - B1 | | | %D 2D | | | %D 2D +15 C0 - C1 | | | %D 2D \ | | | | %D 2D +20 C2 | | | %D 2D | | | %D 2D +15 D0 - D1 E1 F1 G1 %D 2D \ | %D 2D +20 D2 %D 2D %D 2D +20 %D 2D %D ren A1 A2 A3 A4 A5 ==> 1 C PC D PD %D ren B0 B1 ==> \phop\catC^\op \Set %D ren C0 C1 C2 ==> \Hom_\catC(D,C) \Hom(1,PD) PD %D ren D0 D1 D2 ==> \Hom_\catC(-,C) \Hom(1,P-) P %D ren E0 E1 ==> PC \Hom_\hatC(\y(C),P) %D ren F0 F1 ==> α_C(1_C) α %D ren G0 G1 ==> e λD.λu.Pu∘\nameof{e} %D %D (( A1 A3 -> .plabel= r \nameof{e} # \sm{\nameof{θ(α)}=\\\nameof{α_C(1_C)}} %D A2 A3 |-> %D A2 A4 <- .plabel= l u %D A3 A5 -> .plabel= r Pu %D A1 A5 -> .slide= 20pt .plabel= r \sm{Pu∘\nameof{e}=\\\nameof{(Pu)(e)}} %D A2 A5 harrownodes nil 20 nil |-> %D A4 A5 |-> %D B0 relplace 0 -8 \catC %D B0 B1 -> .plabel= a P %D C0 C1 -> %D C1 C2 <-> %D C0 C2 -> .plabel= b λu.(Pu)(e)\;\; %D C0 relplace -38 0 \y(C)(D)= %D D0 D1 -> %D D1 D2 <-> %D D0 D2 -> .plabel= b α %D D0 relplace -35 0 \y(C)= %D E0 E1 <-| sl_ .plabel= l θ %D E0 E1 |-> sl^ .plabel= r θ^{-1} %D F0 F1 <-| %D G0 G1 |-> %D )) %D enddiagram %D \pu % (favp 35 "yoneda-lemma") % (fava "yoneda-lemma") \ColorBrown{\tiny Page 26:} \msk $ % (find-maclanemoerdijk-links (+ 11 26) "This makes y into a functor") % (find-pdf-page "~/LATEX/2021sgl/p026-y.pdf") \incgr {height=5.5cm} {2021sgl/p026-y.pdf} \quad \scalebox{0.45}{$ \begin{array}{l} \diag{p26-b} \\[50pt] \diag{p26-yoneda} \\ \end{array} $} $ \newpage % ____ _________ % | _ \ __ _ __ _ ___ |___ /___ \ % | |_) / _` |/ _` |/ _ \ |_ \ __) | % | __/ (_| | (_| | __/ ___) / __/ % |_| \__,_|\__, |\___| |____/_____| % |___/ % % «page-32-true-terminal» (to ".page-32-true-terminal") % (sglp 7 "page-32-true-terminal") % (sgla "page-32-true-terminal") \ColorBrown{\tiny Page 32:} % \def\rito{\rotatebox[origin=c]{270}{$\ito$}} % \ito rotated right \def\rmon{\rotatebox[origin=c]{270}{$\monicto$}} % \monic rotated right \def\aninc#1#2#3#4{\pmat{#1 \\ #2 \rito #3 \\ #4}} % an inclusion \def\amon #1#2#3#4{\pmat{#1 \\ #2 \rmon #3 \\ #4}} % a monic \def\inctrue{{\aninc {1\ph{mm}} {}{\,\text{true}} {Ω\ph{mm} }}} % true: 1 \ito Ω \def\montrue{{\amon {1\ph{mm,}} {}{\,\text{true}} {Ω\ph{mm,}}}} % true: 1 \ito Ω \def\incSX {{\aninc {S} {}{} {X}}} % S \ito X \def\monSX {{\amon {S} {}{} {X}}} % S \monicto X \def\incSY {{\aninc {S'} {}{} {Y}}} % S' \ito Y \def\monSY {{\amon {S'} {}{} {Y}}} % S' \monicto Y % %$\inctrue % \montrue % \incSX % \monSX % \incSY % \monSY %$ % %D diagram p32-1-monics %D 2Dx 100 +45 %D 2D 100 A0 - A1 %D 2D | | %D 2D +25 A2 - A3 %D 2D %D 2D +25 B0 - B1 %D 2D %D ren A0 A1 A2 A3 ==> ∀S 1 ∀X Ω %D ren B0 B1 ==> ∀\monSX \montrue %D %D (( A0 A1 -> .plabel= a ϕ'=! %D A0 A2 >-> .plabel= l ∀ %D A1 A3 >-> .plabel= r \text{true} %D A2 A3 -> .plabel= a ϕ %D A0 relplace 7 7 \pbsymbol{7} %D B0 B1 -> .plabel= a ∃!\psm{ϕ'\\ϕ} %D )) %D enddiagram %D %D diagram p32-1-inclusions %D 2Dx 100 +45 %D 2D 100 A0 - A1 %D 2D | | %D 2D +25 A2 - A3 %D 2D %D 2D +25 B0 - B1 %D 2D %D ren A0 A1 A2 A3 ==> ∀S 1 ∀X Ω %D ren B0 B1 ==> ∀\incSX \inctrue %D %D (( A0 A1 -> .plabel= a ϕ'=! %D A0 A2 `-> .plabel= l ∀ %D A1 A3 `-> .plabel= r \text{true} %D A2 A3 -> .plabel= a ϕ %D A0 relplace 7 7 \pbsymbol{7} %D B0 B1 -> .plabel= a ∃!\psm{ϕ'\\ϕ} %D )) %D enddiagram %D \pu %$$\diag{p32-1-monics} % \quad % \diag{p32-1-inclusions} %$$ % %D diagram p32-2-monics %D 2Dx 100 +50 +25 %D 2D 100 A0 - A1 - A2 %D 2D | | | %D 2D +20 A3 - A4 - A5 %D 2D %D 2D +20 B0 - B1 %D 2D %D 2D +20 C0 - C1 %D 2D | | %D 2D +20 C2 - C3 %D 2D %D ren A0 A1 A2 ==> S' S 1 %D ren A3 A4 A5 ==> Y X Ω %D ren B0 B1 ==> \monSY \monSX %D ren C0 C1 C2 C3 ==> \Sub_\catC(Y) \Sub_\catC(X) Y X %D %D (( A0 A1 -> A1 A2 -> %D A0 A3 -> .plabel= l m' %D A1 A4 -> .plabel= l m %D A2 A5 -> .plabel= r \text{true} %D A3 A4 -> .plabel= a f %D A4 A5 -> %D A0 relplace 7 7 \pbsymbol{7} %D A1 relplace 7 7 \pbsymbol{7} %D B0 B1 <-| %D C0 C1 <- .plabel= a \Sub_\catC(f) %D C0 C2 <-| %D C1 C3 <-| %D C2 C3 -> .plabel= b f %D C0 C3 varrownodes nil 15 nil <-| %D )) %D enddiagram %D \pu %$$\diag{p32-2-monics} %$$ % %D diagram p32-3-monics %D 2Dx 100 +30 +30 %D 2D 100 A0 - A1 C0 %D 2D | | | %D 2D +30 A2 - A3 C1 %D 2D %D 2D +20 B0 - B1 %D 2D %D ren A0 A1 A2 A3 ==> X \Sub_\catC(X) Y \Sub_\catC(Y) %D ren B0 B1 ==> \catC^\op \Set %D ren C0 C1 ==> \scale{0.7}{\monSX} \scale{0.7}{\monSY} %D %D (( A0 A1 |-> %D A0 A2 <- .plabel= l f %D A1 A3 -> .plabel= r \Sub_\catC(f) %D A2 A3 |-> %D A0 A3 harrownodes nil 20 nil |-> %D B0 B1 -> .plabel= a \Sub_\catC %D newnode: B0' at: @B0+v(-2.5,-7) .TeX= \catC place %D C0 C1 |-> %D %D )) %D enddiagram %D \pu %$$\diag{p32-3-monics} %$$ % (find-maclanemoerdijk-links (+ 11 32) "Definition... subobject classifier" "-sc") $% (find-pdf-page "~/LATEX/2021sgl/p032-sc.pdf") \incgr{height=6cm}{2021sgl/p032-sc.pdf} \quad \scale{0.45}{ \begin{array}{l} \begin{tabular}{l} In the category of \\ monic and pullbacks, \\ \end{tabular} \\ \diag{p32-1-monics} \\ \\ \begin{tabular}{l} and $ϕ'=!$, so $∃!ϕ$. \\ $\scale{0.5}{\monSX}$ is an element of $\Sub_\catC(X)$. \\ $\scale{0.5}{\monSX}$ is an equivalence class, \\ and may not be a set. \\ \end{tabular} \\ \\ \diag{p32-2-monics} \quad \diag{p32-3-monics} \\ \end{array} } $ \newpage % ____ _________ _______ __ % | _ \ __ _ __ _ ___ ___ |___ / ___| / /___ / / /_ % | |_) / _` |/ _` |/ _ \/ __| |_ \___ \ / / |_ \| '_ \ % | __/ (_| | (_| | __/\__ \ ___) |__) / / ___) | (_) | % |_| \__,_|\__, |\___||___/ |____/____/_/ |____/ \___/ % |___/ % % «pages-35-36-Set^2» (to ".pages-35-36-Set^2") % (sglp 8 "pages-35-36-Set^2") % (sgla "pages-35-36-Set^2") \ColorBrown{\tiny Pages 35 and 36:} \msk \def\monSSXX{{\amon {\ph{mi}(S,S')} {(⊂,⊂)}{\ph{mi}} {\ph{mi}(X,X')}}} \def\montt {{\amon {(1,1)\ph{m}} {\ph{m}}{\,\text{true}} {(1,2)\ph{m}}}} % $\monSSXX \montt$ %D diagram p35-SxS %D 2Dx 100 +10 +30 +35 +40 +40 +55 %D 2D 100 A0 A1 B0 C0 - C1 %D 2D +10 | | | | | D0 - D1 %D 2D +10 A2 A3 B1 C2 - C3 %D 2D %D 2D +20 A4 A5 B2 %D 2D %D ren A0 A1 A2 A3 ==> Y Y' X X' %D ren B0 B1 B2 ==> (Y,Y') (X,Y') \Sets×\Sets %D ren C0 C1 C2 C3 ==> ∀(S,S') (1,1) ∀(X,X') (2,2) %D ren D0 D1 ==> ∀\monSSXX \montt %D %D (( A0 A2 -> .plabel= l f %D A1 A3 -> .plabel= r f' %D A4 A5 midpoint .TeX= \Sets place %D B0 B1 -> .plabel= r (f,f') %D B2 place %D C0 C1 -> .plabel= a ! %D C0 C2 >-> .plabel= l ∀(⊂,⊂) %D C1 C3 >-> .plabel= r \text{true} %D C2 C3 -> .plabel= b (ϕ_S,ϕ_{S'}) %D C0 relplace 12 7 \pbsymbol{7} %D D0 D1 -> .plabel= a ∃! %D )) %D enddiagram %D \pu % \def\rS {(S_0 \ton{σ} S_1)} \def\rX {(X_0 \ton{σ} X_1)} \def\rone{(\{0\} \ton{σ} \{0\})} \def\rOm {(\{0,1,2\} \xton{σ = \csm{0↦0 \\ 1↦0 \\ 2↦1}} \{0,1\})} \def\rmyone{(\{11\} \ton{σ} \{·1\})} \def\rmyOm {(\{11,01,00\} \xton{σ = \csm{11↦·1 \\ 01↦·1 \\ 00↦·0}} \{·1,·0\})} % %D diagram p35-2 %D 2Dx 100 +80 %D 2D 100 A0 - A1 %D 2D | | %D 2D +40 A2 - A3 %D 2D %D ren A0 A1 A2 A3 ==> \rS \rone \rX \rOm %D %D (( A0 A1 -> .plabel= a ! %D A0 A2 >-> .plabel= l (⊂,⊂) %D A1 A3 >-> .plabel= r (⊂,⊂) %D A2 A3 -> .plabel= b (ϕ_0,ϕ_1) %D A0 relplace 15 8 \pbsymbol{7} %D newnode: A0' at: @A0+v(-25,0) .TeX= S= place %D )) %D enddiagram %D %D diagram p35-2-my %D 2Dx 100 +80 %D 2D 100 A0 - A1 %D 2D | | %D 2D +40 A2 - A3 %D 2D %D ren A0 A1 A2 A3 ==> \rS \rmyone \rX \rmyOm %D %D (( A0 A1 -> .plabel= a ! %D A0 A2 >-> .plabel= l (⊂,⊂) %D A1 A3 >-> .plabel= r (⊂,⊂) %D A2 A3 -> .plabel= b (ψ_0,ψ_1) %D A0 relplace 15 8 \pbsymbol{7} %D newnode: A0' at: @A0+v(-25,0) .TeX= S= place %D )) %D enddiagram %D \pu $ % (find-maclanemoerdijk-links (+ 11 35) "For the arrow category 2 and Sets^2" "-SxS") % (find-maclanemoerdijk-links (+ 11 35) "For the arrow category 2 and Sets^2" "-S2") % (find-maclanemoerdijk-links (+ 11 36) "For the arrow category 2 and Sets^2" "-S2") % (find-pdf-page "~/LATEX/2021sgl/p035-SxS.pdf") % (find-pdf-page "~/LATEX/2021sgl/p035-S2.pdf") % (find-pdf-page "~/LATEX/2021sgl/p036-S2.pdf") \begin{array}{c} \incgr{width=6cm}{2021sgl/p035-SxS.pdf} \\ \incgr{width=6cm}{2021sgl/p035-S2.pdf} \\ \incgr{width=6cm}{2021sgl/p036-S2.pdf} \\ \end{array} \quad \begin{array}{l} \scale{0.4}{\diag{p35-SxS}} \\ \\ \scale{0.4}{\diag{p35-2}} \\[20pt] \scale{0.4}{\diag{p35-2-my}} \\[20pt] \scale{0.4}{ \begin{array}{cccccc} x∈S_0 & σx∈S_1 & ϕ_0x & ϕ_1(σx) & ψ_0x & ψ_1(σx) \\ \hline \True & \True & 0 & 0 & 11 & ·1 \\ \False & \True & 1 & 0 & 01 & ·1 \\ \False & \False & 2 & 1 & 00 & ·0 \\ \end{array} } \end{array} $ \msk {\tiny \ColorBrown{See:} % % (cltp 29 "SetD-chi") % (clta "SetD-chi") % http://angg.twu.net/LATEX/2020clops-and-tops.pdf#page=29 \url{http://angg.twu.net/LATEX/2020clops-and-tops.pdf#page=29} } \newpage % ____ ____ _____ _ _ _ % | _ \ __ _ __ _ ___ | ___|___ | | |_| |__ _ __ ___ / | % | |_) / _` |/ _` |/ _ \ |___ \ / / | __| '_ \| '_ ` _ \ | | % | __/ (_| | (_| | __/ ___) |/ / | |_| | | | | | | | | | | % |_| \__,_|\__, |\___| |____//_/ \__|_| |_|_| |_| |_| |_| % |___/ % % «page-57-theorem-1» (to ".page-57-theorem-1") % (find-maclanemoerdijkpage (+ 11 57) "9. Quantifiers as Adjoints") % (find-maclanemoerdijk-links (+ 11 57) "9. Quantifiers as Adjoints" "-thm-1") % (hypp 18 "quants-for-children") % (hyp "quants-for-children") \ColorBrown{\tiny Page 57, theorem 1:} $% (find-pdf-page "~/LATEX/2021sgl/p057-thm-1.pdf") \incgr{width=5cm}{2021sgl/p057-thm-1.pdf} $ % ____ ____ ___ _ _ ____ % | _ \ __ _ __ _ ___ | ___| ( _ ) | |_| |__ _ __ ___ |___ \ % | |_) / _` |/ _` |/ _ \ |___ \ / _ \ | __| '_ \| '_ ` _ \ __) | % | __/ (_| | (_| | __/ ___) | (_) | | |_| | | | | | | | | / __/ % |_| \__,_|\__, |\___| |____/ \___/ \__|_| |_|_| |_| |_| |_____| % |___/ % % «page-58-theorem-2» (to ".page-58-theorem-2") % (find-maclanemoerdijkpage (+ 11 58) "9. Quantifiers as Adjoints" "-thm-2") % «pages-58-59-theorem-2» (to ".pages-58-59-theorem-2") % (find-maclanemoerdijkpage (+ 11 58) "9. Quantifiers as Adjoints" "-thm-3") \newpage % ____ __ ___ ___ % | _ \ __ _ __ _ ___ / /_ ( _ ) _____ __ ( _ ) % | |_) / _` |/ _` |/ _ \ | '_ \ / _ \ / _ \ \/ / / _ \ % | __/ (_| | (_| | __/ | (_) | (_) | | __/> < | (_) | % |_| \__,_|\__, |\___| \___/ \___/ \___/_/\_\ \___/ % |___/ % «page-63-exercise-8» (to ".page-63-exercise-8") % (sglp 9 "page-63-exercise-8") % (sgla "page-63-exercise-8") % (find-maclanemoerdijk-links (+ 11 63) "Exercise 8" "-exercise-8") % https://categorytheory.zulipchat.com/#narrow/stream/300905-SGL-Reading.20Group/topic/stream.20events/near/257669027 % https://ncatlab.org/nlab/show/category+of+presheaves % (code-pdf-page "swarajch1ex8" "~/SGL/sgl-swaraj-ch1ex8.pdf") % (find-swarajch1ex8page) \ColorBrown{\tiny Page 63, exercise 8:} \msk $% (find-pdf-page "~/LATEX/2021sgl/p063-exercise-8.pdf") \incgr{width=5.5cm}{2021sgl/p063-exercise-8.pdf} $ \msk % ____ __ _____ _ ___ % | _ \ __ _ __ _ ___ / /_|___ / _____ __ / |/ _ \ % | |_) / _` |/ _` |/ _ \ | '_ \ |_ \ / _ \ \/ / | | | | | % | __/ (_| | (_| | __/ | (_) |__) | | __/> < | | |_| | % |_| \__,_|\__, |\___| \___/____/ \___/_/\_\ |_|\___/ % |___/ % % «page-63-exercise-10» (to ".page-63-exercise-10") % (sglp 9 "page-63-exercise-10") % (sgla "page-63-exercise-10") % (find-maclanemoerdijk-links (+ 11 63) "Exercise 10" "-exercise-10") \ColorBrown{\tiny Page 63, exercise 10:} \msk $% (find-pdf-page "~/LATEX/2021sgl/p063-exercise-10.pdf") \incgr{width=6cm}{2021sgl/p063-exercise-10.pdf} $ %\printbibliography \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2021sgl veryclean make -f 2019.mk STEM=2021sgl pdf % Local Variables: % coding: utf-8-unix % ee-tla: "sgl" % End: