Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2022ebl-abs.tex") % (defun a () (interactive) (find-fline "$S/http/www.ebl2021.ufba.br/assets/files/latex_template.tex")) % (defun c () (interactive) (find-LATEXsh "pdflatex -record 2022ebl-abs.tex" :end)) % (defun C () (interactive) (find-LATEXSH "pdflatex -record 2022ebl-abs.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2022ebl-abs.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2022ebl-abs.pdf")) % (defun e () (interactive) (find-LATEX "2022ebl-abs.tex")) % (defun u () (interactive) (find-latex-upload-links "2022ebl-abs")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun d0 () (interactive) (find-ebuffer "2022ebl-abs.pdf")) % (code-eec-LATEX "2022ebl-abs") % (find-pdf-page "~/LATEX/2022ebl-abs.pdf") % (find-sh0 "cp -v ~/LATEX/2022ebl-abs.tex /tmp/") % (find-sh0 "cp -v ~/LATEX/2022ebl-abs.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2022ebl-abs.pdf /tmp/pen/") % file:///home/edrx/LATEX/2022ebl-abs.pdf % file:///tmp/2022ebl-abs.pdf % file:///tmp/pen/2022ebl-abs.pdf % http://angg.twu.net/LATEX/2022ebl-abs.pdf % (find-LATEX "2019.mk") % (find-lualatex-links "2022ebl-abs" "ebl") % https://mail.google.com/mail/u/0/#inbox/FMfcgzGpGKhRRHqMsfzvPtcbfNmMNVKq EBL submission 49 % https://mail.google.com/mail/u/0/#sent/QgrcJHrtrSkBjQKzMlvVztfpMlTfWWSlKJV LaTeX source % % https://ebl2021.ufba.br/ -> program -> book of abstracts % https://ebl2021.ufba.br/assets/files/abstracts.pdf % (code-pdf-page "ebl2021abstracts" "$S/https/ebl2021.ufba.br/assets/files/abstracts.pdf") % (code-pdf-text "ebl2021abstracts" "$S/https/ebl2021.ufba.br/assets/files/abstracts.pdf" 1) % (find-ebl2021abstractspage) % (find-ebl2021abstractstext) % (find-ebl2021abstractspage (+ 1 147) "Eduardo Ochs") % (find-ebl2021abstractstext (+ 1 147) "Eduardo Ochs") \documentclass[11pt]{article} %use one of the following package accordingly %\usepackage[brazil]{babel} % for portuguese \usepackage[english]{babel} % for english %\usepackage[spanish]{babel} % for spanish \usepackage[latin1]{inputenc} % for accents in portuguese %\usepackage[utf8]{inputenc} % for accents in portuguese using Unicode %% %% %% PLEASE DO NOT MAKE CHANGES TO THIS TEMPLATE %% THAT CAUSE CHANGES IN THE FORMAT OF THE TEXT %% %% \usepackage[centertags]{amsmath} \usepackage{indentfirst,amsfonts,amssymb,amsthm} \usepackage{cite} \usepackage[bottom=1.5cm,top=1.5cm,left=3cm,right=2cm]{geometry} \date{} \begin{document} %******************************************************** \title{On a way to visualize some \\ Grothendieck Topologies} \author{ {\large Eduardo Ochs}\thanks{eduardoochs@gmail.com}\\ {\small UFF, Rio das Ostras, RJ, Brazil} \\ } \maketitle \begin{abstract} \def\Jcan{J_{\text{can}}} \def\R{\mathbb{R}} \def\Opens{\mathcal{O}} \def\calS{\mathcal{S}} \def\catC{\mathbf{C}} The {\sl canonical Grothendieck topology} on $\R$, $\Jcan$, is easy to define, but the definition takes several steps: 1) for each open set $U \in \Opens(\R)$ a {\sl sieve on $U$} is a subset of $\Opens(U)$ that is downward-closed; 2) for each $U \in \Opens(\R)$ we write $\Omega(U)$ for the set of all sieves on $U$; 3) we say that a sieve $\calS \in \Omega(U)$ is {\sl covering} when $\bigcup \calS = U$; 4) for each $U \in \Opens(\R)$ we define $\Jcan(U)$ as the set of covering sieves on $U$. The ``real'' definition of Grothendieck Topology generalizes this definition of $\Jcan$ in many ways: in particular, it starts with a category $\catC$ instead of a topological space $(\R,\Opens(\R))$, and we can have many notions of ``covering-ness'' for the same category --- they just have to obey the three axioms in \cite{SGL}, p.110. In this presentation I will show how we can use some of the techniques in \cite{O22} to understand the general definition of Grothendieck Topology, and I will show how we can visualize all the Grothendieck Topologies on one of the Planar Heyting Algebras of \cite{O19}. Most of the diagrams in the presentation will be taken from \cite{O21}. \end{abstract} \begin{thebibliography}{00} \bibitem{SGL} Mac Lane, S.; Moerdijk, I. {\em Sheaves in geometry and logic: a first introduction to topos theory}. Springer, 1992. \bibitem{O22} Ochs, E. On the missing diagrams in Category Theory. In: L. Magnani (editor), {\em Handbook of Abductive Reasoning}. Springer, 2022. Available at \\ {\tt http://angg.twu.net/math-b.html\#2022-md}. \bibitem{O21} Ochs, E. {\em Grothendieck Topologies for Children}. \\ Available at {\tt http://angg.twu.net/math-b.html\#2021-groth-tops}. \bibitem{O19} Ochs, E. Planar Heyting Algebras for Children. {\em South American Journal of Logic} 5.1:125--164, 2019. Available at {\tt http://angg.twu.net/math-b.html\#zhas-for-children-2}. \end{thebibliography} \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "ebla" % End: