Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008graphs.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008graphs.tex && latex 2008graphs.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008graphs.tex && pdflatex 2008graphs.tex")) % (eev "cd ~/LATEX/ && Scp 2008graphs.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2008graphs.dvi") % (find-pspage "~/LATEX/2008graphs.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -P pk -o 2008graphs.ps 2008graphs.dvi") % (find-zsh0 "cd ~/LATEX/ && dvired -D 300 -P pk -o 2008graphs.ps 2008graphs.dvi") % (find-pspage "~/LATEX/2008graphs.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2008graphs.pdf" (ee-twupfile "LATEX/2008graphs.pdf") 'over) % (ee-cp "~/LATEX/2008graphs.pdf" (ee-twusfile "LATEX/2008graphs.pdf") 'over) % (find-angg "LATEX/2008sheaves.tex") % http://angg.twu.net/LATEX/2008graphs.pdf % (find-dn4tex-links "2008graphs") % (defun d () (interactive) (find-dvipage "~/LATEX/2008graphs.dvi")) % (find-dvipage "~/LATEX/2008graphs.dvi") % «.nd-to-sc» (to "nd-to-sc") % «.heyting-algebras» (to "heyting-algebras") % «.calculating-VimpW» (to "calculating-VimpW") % «.curry-howard-1» (to "curry-howard-1") % «.dags-as-heyting-algebras» (to "dags-as-heyting-algebras") % «.preamble-dgs-and-topologies» (to "preamble-dgs-and-topologies") % «.preamble-dg-to-topology» (to "preamble-dg-to-topology") % «.preamble-truth-values» (to "preamble-truth-values") % «.topological-spaces» (to "topological-spaces") % «.preorders-and-posets» (to "preorders-and-posets") % «.minimal-dag» (to "minimal-dag") % «.presheaves» (to "presheaves") % «.subtopology-of-R» (to "subtopology-of-R") % «.coherent-families» (to "coherent-families") % «.saturation» (to "saturation") % «.a-presheaf-on-a-dag» (to "a-presheaf-on-a-dag") % «.presheaf-on-a-dag-germs» (to "presheaf-on-a-dag-germs") % «.denses-and-stables» (to "denses-and-stables") % «.subst-for-iff» (to "subst-for-iff") % «.LT-modalities» (to "LT-modalities") % «.LT-modalities-and» (to "LT-modalities-and") % «.LT-modalities-or» (to "LT-modalities-or") % «.LT-modalities-imp» (to "LT-modalities-imp") % «.tops-for-or-and-imp» (to "tops-for-or-and-imp") % «.more-about-not-not» (to "more-about-not-not") % «.modalities-alt-axioms» (to "modalities-alt-axioms") % «.LT-modalities-quants» (to "LT-modalities-quants") % «.embedding» (to "embedding") % «.sat-cov-fibration» (to "sat-cov-fibration") % «.geometric-morphisms» (to "geometric-morphisms") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2008graphs.dnt %* % (eedn4-51-bounded) Index of the slides: \msk % To update the list of slides uncomment this line: \makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {Natural Deduction and Sequent Calculus} {2} \tocline {Heyting Algebras} {3} \tocline {Some DAGs are Heyting Algebras} {4} \tocline {Calculating $V⊃W$} {5} \tocline {``Mundo funcional'' e ``Mundo l\'ogico'' (Curry-Howard)} {6} \tocline {Preamble: DGs and topologies} {7} \tocline {Preamble: each DG induces a topology} {8} \tocline {Preamble: truth-values} {9} \tocline {Topological spaces} {10} \tocline {Preorders and partial orders} {11} \tocline {The minimal DAG for a topology} {12} \tocline {Presheaves} {13} \tocline {A subtopology of $\R $} {14} \tocline {Coherent families} {15} \tocline {Saturation and bisaturation} {16} \tocline {A (bad) presheaf on a DAG} {17} \tocline {A presheaf on a DAG: its space of germs} {18} \tocline {Dense and stable truth-values} {19} \tocline {Substitution principles for `$\Leftrightarrow $'} {20} \tocline {Lawvere-Tierney Modalities} {21} \tocline {LT-modalities and `and'} {22} \tocline {LT-modalities and `or'} {23} \tocline {LT-modalities and implication} {24} \tocline {The topologies for `or' and `implies'} {25} \tocline {More about double negation} {26} \tocline {Modalities: alternative axioms} {27} \tocline {LT-modalities and the quantifiers} {28} \tocline {The fibration of saturated covers} {29} \tocline {Embedding} {30} \tocline {Geometric morphisms} {31} % ---------- % Definitions \def\bbV{\mathbb{V}} \def\Nondecr{¯{Nondecr}} \def\emp{\emptyset} \def\DG{¦{DG}} \def\Vee{\dagVee} \def\O{\Opens} \def\OX{\O(X)} \def\OR{{\Opens(\R)}} \def\D{\mathbb{D}} \def\V{\mathbb{V}} \def\Cinfty{\mathcal{C}^\infty} \def\bbV{{\mathbb{V}}} \def\calU{{\mathcal{U}}} \def\calV{{\mathcal{V}}} \def\calW{{\mathcal{W}}} \def\DG {¦{DG}} \def\DAG{¦{DAG}} \def\Top{¦{Top}} \def\TopCAI{¦{TopCAI}} \def\Iinfty{{\bigcap_\infty}} \def\cai{Ð{cai}} \def\dquo#1{\text{``$#1$''}} %:****^{**}* %:***^** %:*<=>*\Bij * %:*&*\&* %:*\&*\&* \newpage % -------------------- % «nd-to-sc» (to ".nd-to-sc") % (s "Natural Deduction and Sequent Calculus" "nd-to-sc") \myslide {Natural Deduction and Sequent Calculus} {nd-to-sc} %: [P&Q]^1 P&Q|-P&Q %: ------- --------- %: [P&Q]^1 Q Q⊃R P&Q|-P&Q P&Q|-Q Q⊃R|-Q⊃R %: ------- ---------- --------- ---------------- %: P R P&Q|-P Q⊃R,P&Q|-R %: -------------- ----------------------- %: P&R Q⊃R,P&Q|-P&R %: ------1 ------------ %: P&Q⊃P&R Q⊃R|-P&Q⊃P&R %: %: ^nd-to-sc-1 ^nd-to-sc-2 %: $$\ded{nd-to-sc-1}$$ $$\ded{nd-to-sc-2}$$ \newpage % -------------------- % «heyting-algebras» (to ".heyting-algebras") % (s "Heyting Algebras" "heyting-algebras") \myslide {Heyting Algebras} {heyting-algebras} A {\sl Heyting Algebra} is a 7-uple $(Ø, §, ®, ∧, ∨, ⊃, \vdash)$, where: \msk $\begin{array}{rcl} §, ® &Ý& Ø, \\ ∧, ∨, ⊃ &:& Ø×Ø \to Ø,\\ \vdash &\subseteq& Ø \\ \end{array} $ \msk and the relation $\vdash$ respects the following ``derivation rules'': %D diagram O(X)-structure %D 2Dx 100 +25 +25 +15 +20 +25 %D 2D 100 --| p0 |- t0 a0 <==== a1 %D 2D / - \ - - - %D 2D / | \ | | <--> | %D 2D v v v v v v %D 2D +25 p1 <--| p2 |--> p3 t1 a2 ====> a3 %D 2D %D 2D +15 c0 |--> c1 <--| c2 i0 %D 2D - - - - %D 2D \ | / | %D 2D \ v / v %D 2D +25 --> c3 <-- i1 %D 2D %D (( p0 .tex= P %D p1 .tex= Q p2 .tex= Q∧R p3 .tex= R %D @ 0 @ 1 |-> @ 0 @ 2 |-> @ 0 @ 3 |-> %D @ 1 @ 2 <-| @ 2 @ 3 |-> %D )) %D (( c0 .tex= P c1 .tex= P∨Q c2 .tex= Q %D c3 .tex= R %D @ 0 @ 1 |-> @ 1 @ 2 <-| %D @ 0 @ 3 |-> @ 1 @ 3 |-> @ 2 @ 3 |-> %D )) %D (( t0 .tex= P t1 .tex= § %D @ 0 @ 1 |-> %D )) %D (( i0 .tex= ® i1 .tex= P %D @ 0 @ 1 |-> %D )) %D (( a0 .tex= P∧Q a1 .tex= P %D a2 .tex= R a3 .tex= Q⊃R %D @ 0 @ 1 <= @ 0 @ 2 |-> @ 1 @ 3 |-> @ 2 @ 3 => %D @ 0 @ 3 harrownodes nil 20 nil <-> %D )) %D enddiagram \bsk $\diag{O(X)-structure}$ \bsk %: P|-Q Q|-R %: ---------- ---- %: P|-R P|-P %: %: ^O(x)-c ^O(x)-id %: %: P|-Q P|-R P∧Q|-R %: ---------- ------ ------ ---- ------(\vbij) %: P|-Q∧R Q∧R|-Q Q∧R|-R P|-§ P|-Q⊃R %: %: ^O(X)-1 ^O(X)-2 ^O(X)-3 ^O(X)-4 ^O(X)-5 %: %: P|-R Q|-R %: ---------- ------ ------ ---- %: P∨Q|-R P|-P∨Q Q|-P∨Q ®|-P %: %: ^O(X)-6 ^O(X)-7 ^O(X)-8 ^O(X)-9 %: $\begin{array}{ccccc} \ded{O(x)-c} & \ded{O(x)-id} \\ \\ \ded{O(X)-1} & \ded{O(X)-2} & \ded{O(X)-3} & \ded{O(X)-4} & \ded{O(X)-5} \\ \\ \ded{O(X)-6} & \ded{O(X)-7} & \ded{O(X)-8} & \ded{O(X)-9} \\ \end{array} $ \bsk Here are three Heyting Algebras: %D diagram three-HAs %D 2Dx 100 +40 +20 +20 +30 +20 +20 %D 2D 100 1 111 X %D 2D %D 2D +20 110 101 011 U V %D 2D %D 2D +20 100 010 001 W %D 2D %D 2D +20 0 000 \emp %D 2D %D (( 0 1 -> %D )) %D (( 000 001 -> 000 010 -> 000 100 -> %D 001 011 -> 001 101 -> %D 010 011 -> 010 110 -> %D 100 101 -> 100 110 -> %D 011 111 -> 101 111 -> 110 111 -> %D )) %D (( X .tex= \dagVee111 %D U .tex= \dagVee101 %D V .tex= \dagVee011 %D W .tex= \dagVee001 %D \emp .tex= \dagVee000 %D \emp W -> W U -> W V -> U X -> V X -> %D )) %D enddiagram %D $$\diag{three-HAs}$$ Note: consider the partial order induced by the DAGs above - i.e., the reflexive/transitive closure of the DAGs. \newpage % -------------------- % «dags-as-heyting-algebras» (to ".dags-as-heyting-algebras") % (s "Some DAGs are Heyting Algebras" "dags-as-heyting-algebras") \myslide {Some DAGs are Heyting Algebras} {dags-as-heyting-algebras} {\bf Theorem:} if $(Ø, §, ®, ∧, ∨, ⊃, \vdash)$ and $(Ø, §', ®', ∧', ∨', ⊃', \vdash)$ are Heyting Algebras, then we have $§ \bij §'$, $® \bij ®$, and for any $P, Q Ý Ø$, $P∧Q \bij P∧'Q$, $P∨Q \bij P∨'Q$, $P⊃Q \bij P⊃'Q$. \msk {\bf Proof} (half of it): %: ----- ----- %: §|-§' ®|-®' %: %: ^dagha-1 ^dagha-2 %: %: ------ ------ ------- ------- %: P&Q|-P P&Q|-Q P|-P∨'Q Q|-P∨'Q %: --------------- ----------------- %: P&Q|-P&'Q P∨Q|-P∨'Q %: %: ^dagha-3 ^dagha-3 %: %: -------- %: P⊃Q|-P⊃Q %: ================= ---------- %: (P⊃Q)&'P|-(P⊃Q)&P (P⊃Q)&P|-Q %: ------------------------------ %: (P⊃Q)&'P|-Q %: --------- %: P⊃Q|-P⊃'Q %: %: ^dagha-4 %: $$\ded{dagha-1} \qquad \ded{dagha-2}$$ $$\ded{dagha-3} \qquad \ded{dagha-3}$$ $$\ded{dagha-4}$$ \msk {\bf Theorem:} if $(Ø, §, ®, ∧, ∨, ⊃, \vdash)$ and $(Ø, §', ®', ∧', ∨', ⊃', \vdash)$ are Heyting Algebras and $(Ø, \vdash)$ is a DAG, then $§=§'$, $®=®'$, $∧=∧'$, $∨=∨'$, $⊃=⊃'$. \ssk So, if a DAG $(Ø, \vdash)$ is Heyting Algebra, then it is a Heyting Algebra in a unique way: $§, ®, ∧, ∨, ⊃$ are well-defined. % being a Heyting Algebra is a ``property'' of some DAGs, % not ``extra structure''. \bsk {\bf Amazing fact:} For any topological space $(X, \Opens(X))$, the DAG $(\Opens(X), \subseteq)$ is a Heyting Algebra. \newpage % -------------------- % «calculating-VimpW» (to ".calculating-VimpW") % (s "Calculating $Vprotect⊃W$" "calculating-VimpW") \myslide {Calculating $V\protect⊃W$} {calculating-VimpW} What is $V⊃W$? Idea: look at all $U$s such that $U\&V \vdash W$. \bsk %D diagram calculating-VimpW %D 2Dx 100 +30 %D 2D 100 \arga∧V <--| \arga %D 2D | | %D 2D | <-> | %D 2D v v %D 2D +30 W |------> V⊃W %D 2D %D (( \arga∧V \arga W V⊃W %D @ 0 @ 1 <-| @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 |-> %D @ 0 @ 3 harrownodes nil 20 nil <-> %D )) %D enddiagram %D { \def\foo#1{\def\arga{#1}\diag{calculating-VimpW}} $\foo{?}$ \bsk $\foo{\emp} \quad \foo{W} \quad \foo{U} $ } \bsk In $\Opens(\bbV)$, this works for these open sets: $\dagKite01011$. Define $V⊃W$ as the greatest of them. More formally: $V⊃W := \sup \sst{U}{U\&V \vdash W}$ $V⊃W := \bigcup\; \sst{U}{U\&V \vdash W}$ $V⊃W := \bigcup\; \sst{U}{U \cap V \subseteq W}$ $V⊃W := \bigcup\; \sst{A^\bol}{A^\bol \cap V \subseteq W}$ $V⊃W := \bigcup\; \sst{A^\bol}{A^\bol \subseteq W \cup (X \bsl V)}$ $V⊃W := (W \cup (X \bsl V))^\bol$ \newpage % -------------------- % «curry-howard-1» (to ".curry-howard-1") % (s "``Mundo funcional'' e ``Mundo lógico'' (Curry-Howard)" "curry-howard-1") \myslide {``Mundo funcional'' e ``Mundo lógico'' (Curry-Howard)} {curry-howard-1} Compare a prova abaixo à esquerda, em Dedução Natural, de que $Q⊃R$ implica $P∧Q⊃P∧R$, com a construção do termo $ðd¨A{×}B.\ang{d,f('d)}:(A{×}B \to A{×}C)$ em $ð$-cálculo simplesmente tipado: %:*&*\&* %:*&*∧* %:*×*{×}* %:*<*\langle * %:*>*\rangle * %: %: f¨B->C Q->R %: =============(?) ============(?) %: f^\#¨A×B->A×C (P&Q)->(P&R) %: %: ^4-functional? ^4-logical? %: %: [P&Q]^1 [d¨A×B]^1 %: ------- --------- %: [P&Q]^1 Q Q⊃R [d¨A×B]^1 'd¨B f¨B->C %: ------- ---------- --------- ---------------- %: P R d¨A f('d)¨C %: -------------- ----------------------- %: P&R <d,f('d)>¨A×C %: ----------1 ------------------------------1 %: (P&Q⊃P&R) ðd¨A×B.<d,f('d)>:A×B->A×C %: %: ^4-logical ^4-functional %: $$\ded{4-logical} \qquad \ded{4-functional}$$ As duas têm exatamente a mesma estrutura. Isto é um exemplo do Isomorfismo de Curry-Howard em funcionamento; ele diz que há uma bijeção natural entre derivações em Dedução Natural e termos de $ð$-cálculo simplesmente tipado. Repare que na árvore um $ð$-cálculo os termos sempre crescem à medida que descemos; se usamos uma nova notação --- ``downcased types'' --- podemos não só manter os termos pequenos, como suprimir os tipos --- os tipos podem ser reconstruídos ``convertendo para maiúsculas'' os termos. Note que os ``conectivos'' também têm que ser convertidos: `,' convertido para maiúscula vira `$×$', e `$\mto$' convertido para maiúscula vira `$\to$'. %: [a,b]^1 %: ------- a,b := d %: [a,b]^1 b b|->c b|->c := f %: ------- ----------- %: a c a := (a,b) %: ------------- b := '(a,b) %: a,c c := (b|->c)(b) %: --------- a,c := <a,c> %: a,b|->a,c a,b|->a,c := ð(a,b).(a,c) %: %: ^4-DNC %: $$\cded{4-DNC} \qquad \begin{array}{rcl} a,b &:=& d \\ b \mto c &:=& f \\ \\ b &:=& '(a,b) \\ c &:=& (b \mto c)(b) \\ a,c &:=& \ang{a,c} \\ a,b \mto a,c &:=& ð(a,b).(a,c) \\ \end{array} $$ Agrora cada barra da árvore define um novo termo a partir de termos anteriores; isto gera o dicionário à direita... e a semântica de cada barra passa a ser: ``se eu sei o significado dos termos acima da barra, eu sei o significado do termo abaixo da barra'', ou: ``se eu sei `$a$' e sei `$c$' eu sei `$a,c$'\,'', ``se eu sei `$b$' e `$b \mto c$' eu sei `$c$'\,'', etc. Os ``termos'' em DNC funcionam de um modo bem diferente dos termos de $ð$-cálculo. Em DNC nós permitimos nomes longos para variáveis (por exemplo, `$a,b$'), a distinção sintática entre variáveis e termos não-primitivos não existe, e, aliás, sem o dicionário não é nem possível determinar só pelos nomes de dois termos qual é ``mais primitivo'' que o outro: por exemplo, $b \mto c$ é mais primitivo que $c$ mas $a,b \mto a,c$ é menos primitivo que $a,c$. \newpage % -------------------- % «preamble-dgs-and-topologies» (to ".preamble-dgs-and-topologies") % (s "Preamble: DGs and topologies" "preamble-dgs-and-topologies") \myslide {Preamble: DGs and topologies} {preamble-dgs-and-topologies} A {\sl directed graph} is a set of worlds, $W$, and a relation $R \subseteq W×W$. \msk Important fact: DGs induce topologies, topologies induce DGs, and in the finite case (which is what matters to us) the correspondence $\DG \leftrightarrows \Top$ is especially well-behaved. \msk This will be our archetypical DAG: % $$\bbV := (W, R) := (\sof{\aa,\bb,\cc}, \sof{\aa\to\cc, \bb\to\cc})$$ % %D diagram Vee-dag %D 2Dx 100 +15 +15 %D 2D 100 \aa \bb %D 2D %D 2D +20 \cc %D 2D %D (( \aa \cc -> \bb \cc -> )) %D enddiagram %D $$\bbV \quad \equiv \diag{Vee-dag}$$ This will be the topological space induced by $\bbV$: % $$(\bbV, \Opens(\bbV)) := (\sof{\aa,\bb,\cc}, \sof{\emp, \sof{\cc}, \sof{\aa,\cc}, \sof{\bb,\cc}, \sof{\aa,\bb,\cc} }) $$ We will use the correspondence mainly to represent finite topological spaces by their associated DGs (or DAGs). \newpage % -------------------- % «preamble-dg-to-topology» (to ".preamble-dg-to-topology") % (s "Preamble: each DG induces a topology" "preamble-dg-to-topology") \myslide {Preamble: each DG induces a topology} {preamble-dg-to-topology} A function $f: W \to \sof{0,1}$ is ``{\sl non-decreasing} (on $R$)'' when all arrows in $R$ are ``non-decreasing''. $$\bbV := (W, R) := (\sof{\aa,\bb,\cc}, \sof{\aa\to\cc, \bb\to\cc})$$ $$\bbV \quad \equiv \diag{Vee-dag}$$ $\Vee100$ decreases on the arrow $\aa\to\cc$: $f(\aa\to\cc) = 1 \to 0$. $\Vee010$ decreases on $\bb\to\cc$. $\Vee110$ decreases on both $\aa\to\cc$ and $\bb\to\cc$. The non-decreasing functions $\bbV \to \sof{0,1}$ are $\Vee000, \Vee001, \Vee011, \Vee101, \Vee111$. A ``{\sl non-decreasing subset}'' $W' \subseteq W$ is one whose characteristic function is non-decreasing (on $R$). Definition: % $$\Nondecr(W,R) := \sst{W' \subseteq W}{\text{$W'$ is non-decreasing on $R$}}$$ For a DG $\bbD := (W,R)$ the induced topological space is: % $$(\bbD, \Opens(\bbD)) := (W, \Opens(\bbD)) := (W, \Nondecr(W, R))$$ For the dag $\V$ above, this is: % $$(\bbV, \Opens(\bbV)) := (\sof{\aa,\bb,\cc}, \sof{\emp, \sof{\cc}, \sof{\aa,\cc}, \sof{\bb,\cc}, \sof{\aa,\bb,\cc} }) $$ Fact: topologies induced by DGs are closed by arbitrary intersections of open sets --- not just by finite intersections. \newpage % -------------------- % «preamble-truth-values» (to ".preamble-truth-values") % (s "Preamble: truth-values" "preamble-truth-values") \myslide {Preamble: truth-values} {preamble-truth-values} Abuse of language: We will often write subsets of $W$ (non-decreasing or not) as if they were the corresponding functions $W \to \sof{0,1}$. So, for example: $\sof{\bb,\cc} \equiv \Vee011$, $\Opens(\bbV) = \Nondecr(\bbV) \equiv \sof{\Vee000, \Vee001, \Vee011, \Vee101, \Vee111}$. \bsk Terminology: A function $W \to \sof{0,1}$ is a ``{\sl modal truth-value}''. A non-decreasing function $W \to \sof{0,1}$ is an ``{\sl intuitionistic truth-value}''. We will see later that the modal truth-values live in a category $\Set^W$ and that the intuitionistic truth-values live in a category $\Set^\bbD$. \bsk \bsk {\bf Big fact:} we can interpret propositional logic on modal truth-values... just operate on each world separately, e.g.: $\Vee011 \land \Vee101 = \Vee001$. On modal truth-values the ``logic'' is boolean but not two-valued. \msk {\bf Bigger fact:} the intuitionistic truth-values on a DAG $\D$ form a ``Heyting algebra'', $\O(\D)$ --- we can interpret propositional logic there, but it will be {\sl intuitionistic} --- we can't prove $¬¬P⊃P$ there because that is {\sl not always true}: take $P:=\Vee001$, then $¬¬P \equiv \Vee111$. \msk {\bf Mind-blowing fact:} the notion of ``taking the union of all open sets in a given cover'' can be interpreted as a {\sl new logical operation}, obeying some axioms: namely, $§^* = §$, $P^{**} = P^*$, $P^*∧Q^* = (P∧Q)^*$. This ``taking the union...'' operation is a particular case of something much more general: {\sl Lawvere-Tierney topologies}, that generalize both {\bf sheaves} and {\bf forcing}. \msk We can understand \und{sheaves} through \und{logic}. \bsk \bsk \fbox{ \begin{tabular}{l} {\bf Tiny, but amazing, fact:} we can understand all these ideas \\ from the cases of the DAGs $\V \equiv \dagVee***$ and $\O(\V)^\op \equiv \dagKite*****$, \\ and then generalizing. This tiny \& amazing fact --- that in a sense \\ is trivial, and is little more than working out in full detail \\ a few chosen exercises from topos theory books --- \\ is the guiding thread for these notes. \\ \end{tabular} } \newpage % -------------------- % «topological-spaces» (to ".topological-spaces") % (s "Topological spaces" "topological-spaces") \myslide {Topological spaces} {topological-spaces} A topological space is a pair $(X,\O(X))$ where $\O(X) \subset \Pts(X)$ is a topology on the set $X$: (i) $XÝ\O(X)$, $\empÝ\O(X)$, (ii) $\O(X)$ is closed by arbitrary unions, (iii) $\O(X)$ is closed by finite intersections. \msk Sometimes an $\OX$ is closed by {\bf arbitrary intersections}... This happens for $(\V,\O(\V))$ and for $(\R,\Pts(\R))$, but not for $(\R,\O(\R))$. When this happens we say that $\OX$ is an {\sl Alexandroff topology}, and that $(X,\OX)$ is an {\sl Alexandroff space}. We will refer to these things by more mnemonic names: $\OX$ is a ``topcai'', $(X,\OX)$ is a ``topcai space''. \msk There is an inclusion of categories - a functor: % $$\TopCAI \monicto \Top$$ and we can take a topology $\OX$ and look at the set of arbitrary intersections of its open sets, $\Iinfty\OX$ - it turns out that $\Iinfty\OX$ is closed by arbitrary unions, and is a topology - actually a topcai. \msk This operation - ``closing by arbitrary intersections'' - is a functor: $$\begin{array}{rccc} \cai: & \Top & \to & \TopCAI \\ & (X,\OX) & \mto & (X,\Iinfty\OX) \\ \end{array} $$ and there is an adjunction $(\monicto) \dashv \cai$. \msk ($\TopCAI$ is a ``coreflective subcategory'' of $\Top$ - the inclusion funtor $(\monicto)$ has a right adjoint). \msk Note that its counit on $(\R,\O(\R))$ is the continuous map $\dquo{\id}: (\R,\Pts(\R)) \to (\R,\O(\R))$: %D diagram counit-R %D 2Dx 100 +50 +50 +50 %D 2D 100 a0 <---| a1 b0 <---| b1 %D 2D | | | | %D 2D | <-> | | <-> | %D 2D v v v v %D 2D +30 a2 |---> a3 b2 |---> b3 %D 2D %D 2D +20 a4 <===> a5 b4 <===> b5 %D 2D %D (( a0 .tex= (X,\OX) a1 .tex= (X,\OX) %D a2 .tex= (Y,\O(Y)) a3 .tex= (Y,\Iinfty\O(Y)) %D a4 .tex= \Top a5 .tex= \TopCAI %D a0 a1 <-| a0 a2 -> a1 a3 -> a2 a3 |-> .plabel= b \cai %D a0 a3 harrownodes nil 20 nil <-> %D a4 a5 <-< sl^ a4 a5 ->> sl_ .plabel= b \cai %D )) %D (( b0 .tex= (\R,\Pts(\R)) b1 .tex= (\R,\Pts(\R)) %D b2 .tex= (\R,\O(\R)) b3 .tex= (\R,\Pts(\R)) %D b4 .tex= \Top b5 .tex= \TopCAI %D b0 b1 <-| %D b0 b2 -> .plabel= l \dquo{\id} %D b1 b3 -> .plabel= r \id %D b2 b3 |-> .plabel= b \cai %D b0 b3 harrownodes nil 20 nil <-> %D b4 b5 <-< sl^ b4 b5 ->> sl_ .plabel= b \cai %D )) %D enddiagram %D $$\diag{counit-R}$$ \newpage % -------------------- % «preorders-and-posets» (to ".preorders-and-posets") % (s "Preorders and partial orders" "preorders-and-posets") \myslide {Preorders and partial orders} {preorders-and-posets} A {\sl preorder} on $W$ is a relation $(\le) \subset W×W$ that is: (i) reflexive: $a \le a$ (ii) transitive: if $a \le b$ and $b \le c$, then $a \le c$. A {\sl partial order} is a preorder that is also: (iii) anti-symmetric: if $a \le b$ and $b \le a$, then $a = b$. \msk A directed graph $(W,R)$ induces a preorder $(W,\le) := (W,R^*)$... Mnemonic: the `$*$' is a Kleene star: if $a R a_1 R a_2 R a_3 R b$ then $a R^4 b$, and thus $a R^* b$; ``$R^*$'' means ``at least zero `$R$'s''. More formally: $R^* := R^0 \cup R^1 \cup R^2 \cup R^3 \cup \ldots$, the reflexive/transitive closure of $R$. ($R^0$ is the diagonal --- $a R^0 b$ iff $a=b$). \msk Each cycle in a DG $(W,R)$ becomes a set of ``equivalent elements'' in the induced preorder Let's consider just DAGs for a while. DAGs induce partial orders --- aciclicity leads to antisymmetry. \msk A DG can be converted to a DAG by identifying the elements in each cycle: %D diagram collapsing-cycles %D 2Dx 100 +10 +10 +10 +40 %D 2D 100 a <===> b \{a,b\} %D 2D \ | %D 2D v v %D 2D +20 c ----> d \{c,d,e\} %D 2D ^ / | %D 2D \ v | %D 2D +20 e | %D 2D | | %D 2D v v %D 2D +20 f \{f\} %D 2D %D 2D q %D 2D +20 \DG -------> \DAG %D (( a b -> sl^ a b <- sl_ %D a c -> c d -> d e -> e c -> e f -> %D )) %D (( \{a,b\} \{c,d,e\} \{f\} %D @ 0 @ 1 -> @ 1 @ 2 -> %D )) %D (( \DG \DAG -> .plabel= a Ðq %D enddiagram %D $$\diag{collapsing-cycles}$$ \msk It turns out that the inclusions $\DG^* \monicto \DG$ and $\DAG^* \monicto \DAG$ have left adjoints: in both cases, $* \dashv (\monicto)$, and the units of the adjunctions take a DG or DAG $(W,R)$ to its reflexive and transitive closure. \msk Also, the inclusion $\DAG^* \monicto \DG^*$ have a left adjoint: `$Ðq$'. %D diagram DAG-DG-adjunctions %D 2Dx 100 +15 +20 +15 %D 2D 100 \DG* <=> \DG %D 2D <=> -> %D 2D +25 \DAG* <=> \DAG %D 2D %D (( \DG* \DG >-> sl_ \DG* \DG <- sl^ .plabel= a * %D \DAG* \DAG >-> sl_ \DAG* \DAG <- sl^ .plabel= a * %D \DAG* \DG* >-> sl_ \DAG* \DG* <- sl^ .plabel= l Ðq %D \DAG \DG >-> %D )) %D enddiagram %D $$\diag{DAG-DG-adjunctions}$$ \newpage % -------------------- % «minimal-dag» (to ".minimal-dag") % (s "The minimal DAG for a topology" "minimal-dag") \myslide {The minimal DAG for a topology} {minimal-dag} Each DG $\D = (W,R)$ induces a topcai: $(W, \Nondecr(R))$ - but several DGs induce the same topcai. One canonical way to represent a topcai by a DG is to pick the associated DG${}^*$ - it is the maximal DG generating that topcai. \msk For {\sl finite DAGs} - i.e., for finite $T_0$ topological spaces - there is also a {\sl minimal} DAG generating that topology... The process to obtain it is to drop all the arrows that are not ``essential''. Here's an example: (by the way: $\text{ess} \dashv {}^* \dashv (\monicot)$) % %D diagram dag-minimal %D 2Dx 100 +15 %D 2D 100 a %D 2D +15 b %D 2D +15 c %D 2D %D (( a b -> b c -> %D )) %D enddiagram % %D diagram dag-medium %D 2Dx 100 +15 %D 2D 100 a %D 2D +15 b %D 2D +15 c %D 2D %D (( a b -> b c -> %D # a loop (ur,dr) %D b loop (ul,dl) %D c loop (ur,dr) %D )) %D enddiagram % %D diagram dag-full %D 2Dx 100 +15 %D 2D 100 a %D 2D +15 b %D 2D +15 c %D 2D %D (( a b -> b c -> a c -> %D a loop (ur,dr) %D b loop (ul,dl) %D c loop (ur,dr) %D )) %D enddiagram % %D diagram dags %D 2Dx 100 +70 %D 2D 100 A B %D 2D %D 2D +60 C D %D 2D %D 2D +60 E F %D 2D %D 2D +40 \DAG \DAG* %D 2D %D (( A .tex= \usebox{\myboxa} %D B .tex= \usebox{\myboxc} %D C .tex= \usebox{\myboxb} %D D .tex= \usebox{\myboxc} %D E .tex= \usebox{\myboxc} %D F .tex= \usebox{\myboxc} %D A B <-| .plabel= a ¯{ess} %D A C -> B D -> A D harrownodes nil 20 nil <-> %D C D |-> .plabel= a * %D C E -> D F -> C F harrownodes nil 20 nil <-> %D E F <-| %D )) %D (( \DAG \DAG* %D @ 0 @ 1 -> sl^^ .plabel= a ¯{ess} %D @ 0 @ 1 <- .plabel= m * %D @ 0 @ 1 >-> sl__ %D )) %D enddiagram %D $$\savebox{\myboxa}{$\diag{dag-minimal}$} \savebox{\myboxb}{$\diag{dag-medium}$} \savebox{\myboxc}{$\diag{dag-full}$} \diag{dags} $$ \msk (The moral is that there is something canonical about representing topologies ($T_0$, and on finite sets) by DAGs with very few arrows) \newpage % -------------------- % «presheaves» (to ".presheaves") % (s "Presheaves" "presheaves") \myslide {Presheaves} {presheaves} A {\sl presheaf} on $(X,\OX)$ is a (contravariant) functor $\OX^\op \to \Set$. A {\sl sheaf} is a presheaf obeying a ``glueing condition'', that we will see later. Example: $\Cinfty: \Opens(\R)^\op \to \Set$. If $V \subset U$, then: % %D diagram presh-1 %D 2Dx 100 +35 %D 2D 100 \Cinfty(V) <--- \Cinfty(U) %D 2D ^ ^ ^ %D 2D | | | %D 2D - - - %D 2D +25 V >------------> U %D 2D %D (( \Cinfty(V) \Cinfty(U) V U %D @ 0 @ 1 <- .plabel= a _V^U %D @ 0 @ 2 <-| @ 1 @ 3 <-| @ 0 @ 3 varrownodes nil 20 nil <-| %D @ 2 @ 3 >-> %D )) %D enddiagram %D $$\diag{presh-1}$$ The map $_V^U := \Cinfty(V \monicto U)$ is called the ``restriction function''. \msk We will borrow some terminology from the case of functions defined over open sets: for a presheaf $P: \OX^\op \to \Set$ and $W \subseteq V \subseteq U$, % $$\begin{array}{rl} p_U \in P(U) & \text{a ``function/element with support $U$''} \\ p_X \in P(X) & \text{a ``global function/element''} \\ _V^U: P(U) \to P(V) & \text{``restriction function''} \\ (_V^U := P(V \monicto U)) & \\ \end{array} $$ Functoriality means two conditions on restriction maps: $P(U \monicto U) = \id_{P(U)}$ $P(W \monicto V)¢P(V \monicto U) = P(W \monicto U)$ % %D diagram presh-2 %D 2Dx 100 +25 +25 %D 2D 100 P(W) <----- P(U) %D 2D <- <- %D 2D +20 P(V) %D 2D %D 2D +15 W >--------> U %D 2D >-> >-> %D 2D +20 V %D 2D %D (( P(W) P(V) P(U) %D W V U %D @ 0 @ 1 <- @ 1 @ 2 <- @ 0 @ 2 <- %D @ 3 @ 4 >-> @ 4 @ 5 >-> @ 3 @ 5 >-> %D @ 0 @ 3 <-| @ 1 @ 4 <-| @ 2 @ 5 <-| %D )) %D enddiagram %D $$\diag{presh-2}$$ \newpage % -------------------- % «subtopology-of-R» (to ".subtopology-of-R") % (s "A subtopology of $\R$" "subtopology-of-R") \myslide {A subtopology of $\protect\R$} {subtopology-of-R} The topology on the DAG $\bbV$ can be seen as a subtopology of $\R$... Consider the quotient $q$ below, or, equivalently, $q'$: $$\begin{array}{l} q: \R \to \{(-‚,0], \, (0,1), \, [1,‚)\} \\ q': \R \to \{\aa, \cc, \bb\} \end{array} $$ ${q'}^{-1}(\Pts(\{\aa, \cc, \bb\})) \;\subset\; \Pts(\R)$ is a topology on $\R$ with 8 open sets. ${q'}^{-1}(\Pts(\{\aa, \cc, \bb\})) Ì \OR \;\subset\; \OR \;\subset\; \Pts(\R)$ is a topology on $\R$ with 5 open sets. Compare: % %D diagram UVW-and-R-1 %D 2Dx 100 +12 +12 +20 +12 +12 +30 +12 +12 +27 +12 +12 %D 2D 100 X X' %D 2D / \ / \ %D 2D +20 \aa \bb U V U' V' \aa' \bb' %D 2D \ / \ / \ / \ / %D 2D +20 \cc W W' \cc' %D 2D | | %D 2D +20 \emp \emp{} %D 2D %D (( X .tex= \{\aa,\bb,\cc\} %D U .tex= \{\aa,\cc\} V .tex= \{\bb,\cc\} %D W .tex= \{\cc\} %D \emp %D @ 0 @ 1 <- @ 0 @ 2 <- %D @ 1 @ 3 <- @ 2 @ 3 <- %D @ 3 @ 4 <- %D )) %D (( X' .tex= (-‚,‚) %D U' .tex= (-‚,1) V' .tex= (0,‚) %D W' .tex= (0,1) %D \emp{} %D @ 0 @ 1 <- @ 0 @ 2 <- %D @ 1 @ 3 <- @ 2 @ 3 <- %D @ 3 @ 4 <- %D )) %D (( \aa \cc -> \bb \cc -> %D )) %D (( \aa' .tex= (-‚,0] \bb' .tex= [1,‚) \cc' .tex= (0,1) %D \aa' \cc' -> \bb' \cc' -> %D )) %D enddiagram %D $$\diag{UVW-and-R-1}$$ We will refer to these open sets as $X$, $U$, $V$, $W$, $\emp$: %D diagram XUVW-and-bits %D 2Dx 100 +15 +15 +30 +15 +15 %D 2D 100 \dagVee111 X %D 2D %D 2D +20 \dagVee101 \dagVee011 U V %D 2D %D 2D +20 \dagVee001 W %D 2D %D 2D +20 \dagVee000 \emp %D 2D %D 2D +20 %D 2D %D (( \dagVee111 %D \dagVee101 \dagVee011 %D \dagVee001 %D \dagVee000 %D @ 0 @ 1 <- @ 0 @ 2 <- %D @ 1 @ 3 <- @ 2 @ 3 <- %D @ 3 @ 4 <- %D )) %D (( X U V W \emp %D @ 0 @ 1 <- @ 0 @ 2 <- %D @ 1 @ 3 <- @ 2 @ 3 <- %D @ 3 @ 4 <- %D )) %D enddiagram %D $$\diag{XUVW-and-bits}$$ Note that $U$ will sometimes mean a specific open set - $\dagVee101$ -, sometimes an arbitrary open set; same for the other letters. \newpage % -------------------- % «coherent-families» (to ".coherent-families") % (s "Coherent families" "coherent-families") \myslide {Coherent families} {coherent-families} Now let $X := \R$, and let's consider two functions defined on subsets of $X$: $\begin{array}{rrcl} x_U: & U & \to & \R \\ & x & \mto & x \\ 0_U: & U & \to & \R \\ & x & \mto & 0 \\ \end{array} $ (I.e., we're defining $x_X, x_U, x_V, x_W, x_\emp$, $0_X, 0_U, 0_V, 0_W, 0_\emp$). \msk We can also consider families of functions, whose supports are families of open sets - $\{x_U, x_V\}$ and $\{x_U, 0_V\}$ are families with support $\{U, V\}$. Note: $\{x_U, x_V, 0_V\}$ is {\sl not} a family with support $\{U, V\}$ because $V$ has two ``images'': $x_V$ and $0_V$. \bsk A function defined on $U$ - say, $x_U$ - induces a family $\{x_U\}$ defined on $\{U\}$, i.e., on $\dagKite01000$ - and another family, $\{x_U, x_W, x_\emp,\}$, defined on all open sets under $U$ - i.e., on the saturation of $\{U\} = \dagKite01000$, which is $\dagKite01011$. \bsk When we try to extend the family $\{x_U, 0_V\}$ to the saturation of $\dagKite01100$, i.e., to $\dagKite01111$, we see that we get two different candidates for $W$ - $x_W \neq 0_W$ - which is not good... \msk A family is said to be {\sl coherent} when its extension to the saturation of its support is well-defined. $\{x_U, x_V\}$ is coherent, $\{x_U, 0_V\}$ is not. Here's a way to define formally coherence for families: a family $a_\U$ is coherent iff $ýa_U, a_V Ý a_\U \; a_U|_{UÌV} = a_V|_{UÌV}$. Note that $\{x_U, 0_V, 0_W\}$ is not coherent. \newpage % -------------------- % «saturation» (to ".saturation") % (s "Saturation and bisaturation" "saturation") \myslide {Saturation and bisaturation} {saturation} Notation: the calligraphic letters $\calU, \calV, \calW$ will denote families of open sets, and the annotations `${}^\bol$', `${}^\bul$', `${}^\dbul$' will indicate how saturated a family is - $\calU^\bol$: not necessarily saturated $\calU^\bul$: saturated $\calU^\dbul$: bisaturated We will sometimes use $\bul$, $\dbul$ to denote {\sl operations}: $\bul$ is ``saturate'', $\dbul$ is ``bisaturate''. \newpage % -------------------- % «a-presheaf-on-a-dag» (to ".a-presheaf-on-a-dag") % (s "A (bad) presheaf on a DAG" "a-presheaf-on-a-dag") \myslide {A (bad) presheaf on a DAG} {a-presheaf-on-a-dag} %D diagram UVW-and-R %D 2Dx 100 +15 +15 +30 +15 +15 %D 2D 100 X X' %D 2D / \ / \ %D 2D +20 U V U' V' %D 2D \ / \ / %D 2D +20 W W' %D 2D | | %D 2D +20 \emp \emp{} %D 2D %D 2D +20 %D 2D %D (( X %D U V %D W %D \emp %D @ 0 @ 1 <- @ 0 @ 2 <- %D @ 1 @ 3 <- @ 2 @ 3 <- %D @ 3 @ 4 <- %D )) %D (( X' .tex= (-‚,‚) %D U' .tex= (-‚,1) V' .tex= (0,‚) %D W' .tex= (0,1) %D \emp{} %D @ 0 @ 1 <- @ 0 @ 2 <- %D @ 1 @ 3 <- @ 2 @ 3 <- %D @ 3 @ 4 <- %D )) %D enddiagram %D $$\diag{UVW-and-R}$$ Here is a presheaf over $(X,\Opens(X))$ (``$P$'') that is not a sheaf - it violates the two sheaf conditions. $P$ is not collated - because $\{p_U, p_{V'}\}$ is a coherent family (on $\{U,V\}$) that cannot be collated to a global function. $P$ is not separated - because there are two different collations for $\{p_U, p_V\}$. % (find-dn4file "dednat41.lua" "forths[\".PLABEL=\"] =") % (find-dn4file "dednat41.lua" "storenode =") %L thereplusxy = function (dx, dy, tag) %L ds[1] = storenode({x = ds[1].x + dx, y = ds[1].y + dy, tag = tag}) %L return ds[1] %L end %L forths["there+xy:"] = function () %L thereplusxy(getword(), getword(), getword()) %L end \def\ph#1{\phantom{O}} \def\ph#1{#1} \def\ph#1{O} \def\ph#1{{\color{red}#1}} \def\ph#1{\phantom{#1}} %D diagram bad-presheaf %D 2Dx 100 +15 +15 +30 +15 +15 %D 2D 100 X X' %D 2D / \ / \ %D 2D +20 U V U' V' %D 2D \ / \ / %D 2D +20 W W' %D 2D | | %D 2D +20 \emp \emp{} %D 2D %D (( X .tex= P(X) %D U .tex= P(U) V .tex= P(V) %D W .tex= P(W) %D \emp .tex= P(\emp) %D @ 0 @ 1 -> @ 0 @ 2 -> %D @ 1 @ 3 -> @ 2 @ 3 -> %D @ 3 @ 4 -> %D )) %D (( X' there+xy: -6 0 X'L .tex= \ph{p_X} %D X' there+xy: 6 0 X'R .tex= \ph{p'_X} %D V' there+xy: -6 0 V'L .tex= \ph{p_V} %D V' there+xy: 6 0 V'R .tex= \ph{p'_V} %D )) %D (( X' .tex= \{p_X,p'_X\} %D U' .tex= \{p_U\} V' .tex= \{p_V,p'_V\} %D W' .tex= \{p_W\} %D \emp{} .tex= \{p_\emp\} %D # @ 0 @ 1 -> @ 0 @ 2 -> %D # @ 1 @ 3 -> @ 2 @ 3 -> %D # @ 3 @ 4 -> %D X' place %D X'L U' -> X'R U' -> X'L V'L -> X'R V'L -> %D V' place %D U' W' -> V'L W' -> V'R W' -> %D W' \emp{} -> %D )) %D enddiagram %D $$\diag{bad-presheaf}$$ \newpage % -------------------- % «presheaf-on-a-dag-germs» (to ".presheaf-on-a-dag-germs") % (s "A presheaf on a DAG: its space of germs" "presheaf-on-a-dag-germs") \myslide {A presheaf on a DAG: its space of germs} {presheaf-on-a-dag-germs} Its space of germs is built like this: for each point in $X$ - i.e., for $\aa, \bb, \gg$; let's look at $\aa$ - look at all open sets containing $\aa$ (namely: $U=\{\aa,\cc\}, X=\{\aa,\bb,\cc\}$) and take the colimit of $P$ on these open sets as they get smaller and smaller. As there is a smallest open set containing $\aa$ - and $\bb$, and $\cc$ - these colimits/germs are very easy to calculate: %D diagram bad-presheaf-germs %D 2Dx 100 +15 +15 +30 +15 +15 %D 2D 100 \aa \bb \aa' \bb' %D 2D \ / \ / %D 2D +20 \cc \cc' %D 2D %D (( \aa \cc -> \bb \cc -> %D )) %D (( \bb' there+xy: -6 0 \bb'L .tex= \ph{p_\bb} %D \bb' there+xy: 6 0 \bb'R .tex= \ph{p'_\bb} %D )) %D (( \aa' .tex= \{p_\aa\} %D \bb' .tex= \{p_\bb,p'_\bb\} %D \cc' .tex= \{p_\cc\} %D \aa' \cc' -> %D \bb' place \bb'L \cc' -> \bb'R \cc' -> %D )) %D enddiagram %D $$\begin{matrix} p_\aa := p_U \\ p_\bb := p_V \\ p'_\bb := p'_V \\ p_\cc := p_W \\ \end{matrix} \qquad \cdiag{bad-presheaf-germs} $$ \msk The projection map $E \to X$ is the obvious one. We need to put a topology to $E$; it turns out (why?) that the right topology is the one induced by the obvious graph. Now this induces a sheaf of sections... {\bf (I am skipping some steps -)} %D diagram bad-presheaf-sheaf %D 2Dx 100 +15 +15 +30 +15 +15 %D 2D 100 X X' %D 2D / \ / \ %D 2D +20 U V U' V' %D 2D \ / \ / %D 2D +20 W W' %D 2D | | %D 2D +20 \emp \emp{} %D 2D %D 2D +20 %D 2D %D (( X .tex= S(X) %D U .tex= S(U) V .tex= S(V) %D W .tex= S(W) %D \emp .tex= S(\emp) %D @ 0 @ 1 -> @ 0 @ 2 -> %D @ 1 @ 3 -> @ 2 @ 3 -> %D @ 3 @ 4 -> %D )) %D (( X' there+xy: -5 0 X'L .tex= \ph{s_X} %D X' there+xy: 5 0 X'R .tex= \ph{s'_X} %D V' there+xy: -5 0 V'L .tex= \ph{s_V} %D V' there+xy: 5 0 V'R .tex= \ph{s'_V} %D )) %D (( X' .tex= \{s_X,s'_X\} %D U' .tex= \{s_U\} V' .tex= \{s_V,s'_V\} %D W' .tex= \{s_W\} %D \emp{} .tex= \{s_\emp\} %D # @ 0 @ 1 -> @ 0 @ 2 -> %D # @ 1 @ 3 -> @ 2 @ 3 -> %D # @ 3 @ 4 -> %D X' place %D X'L U' -> X'R U' -> X'L V'L -> X'R V'R -> %D V' place %D U' W' -> V'L W' -> V'R W' -> %D W' \emp{} -> %D )) %D enddiagram %D $$\diag{bad-presheaf-sheaf}$$ \newpage % -------------------- % «denses-and-stables» (to ".denses-and-stables") % (s "Dense and stable truth-values" "denses-and-stables") \myslide {Dense and stable truth-values} {denses-and-stables} At the left below we see the representation as a presheaf of the ``$\dbul$-stable truth-values'', $\sst{Ï}{Ï^\dbul=Ï} \subset Ø$; It is a sheaf, and it can be recovered from its ``global elements''. \msk %D diagram denses-and-stables %D 2Dx 100 +25 +25 +40 +25 +25 %D 2D 100 X X' %D 2D / \ / \ %D 2D +30 U V U' V' %D 2D \ / \ / %D 2D +30 W W' %D 2D | | %D 2D +30 \emp \emp{} %D 2D %D (( X .tex= \sof{\k00001,\k00011,\k00111,\k01011,\k11111} %D U .tex= \sof{\k·0·01,\k·0·11,\k·1·11} V .tex= \sof{\k··001,\k··011,\k··111} %D W .tex= \sof{\k···01,\k···11} %D \emp .tex= \sof{\k····1}) %D @ 0 @ 1 -> @ 0 @ 2 -> %D @ 1 @ 3 -> @ 2 @ 3 -> %D @ 3 @ 4 -> %D )) %D (( X' .tex= \sof{\k01111,\k11111} %D U' .tex= \sof{\k·1·11} V' .tex= \sof{\k··111} %D W' .tex= \sof{\k···11} %D \emp{} .tex= \sof{\k····0,\k····1} %D @ 0 @ 1 -> @ 0 @ 2 -> %D @ 1 @ 3 -> @ 2 @ 3 -> %D @ 3 @ 4 -> %D )) %D enddiagram %D $$\def\k{\dagKite} \diag{denses-and-stables} $$ \msk At the right above we see the representation as a presheaf of the ``$\dbul$-dense truth-values'', $Ø_\dbul := \sst{Ï}{Ï^\dbul=§} \subset Ø$. It is not a sheaf, it can't be recovered from its ``global elements'' as $\sst{Ï}{Ï^\dbul=Ï}$ can; yet - and I have to admit that I found that {\sl very} surprising - we can recover the modality from the subobject $Ø_\dbul \monicto Ø$, by: $Ï^\dbul := Ï Ý Ø_\dbul$ % \end{document} \newpage % -------------------- % «subst-for-iff» (to ".subst-for-iff") % (s "Substitution principles for `$\Bij$'" "subst-for-iff") \myslide {Substitution principles for `$\Bij$'} {subst-for-iff} We will also use the following ``substitution principles'': if $P$, $Q$, $Q'$, $R$, $R'$ are formulas, and $R'$ is obtained from $R$ by replacing some occurrences of $Q$ in it by $Q'$, then %: P|-Q<=>Q' P|-Q<=>Q' P|-R %: ========= =============== %: P|-R<=>R' and P|-R' %: %: ^<=>-subst-1 ^<=>-subst-2 %: $$\ded{<=>-subst-1} \qquad \ded{<=>-subst-2}$$ \msk The ``theorems'' above - and the ones in the following slides - can be proved using just the sequent calculus rules for intuitionistic propositional logic augmented with the three axioms for `${}^*$'. \msk To make the proofs more manageable we will often make use of the ``\,`$\Bij$' trick'': starting from $P \vdash Q \Bij Q'$ and a proof of $P \vdash R$ we can produce a proof of $P \vdash R'$, where $R'$ is $R$ with some occurrences of `$Q$' replaced by `$Q'$'s. \msk Example: (...) To prove these first theorems --- and the ones in the next slides --- we will need some facts about the biconditional, `$\Bij$', that is defined as: % $$P \Bij Q := (P⊃Q)∧(Q⊃P)$$ \newpage % -------------------- % «LT-modalities» (to ".LT-modalities") % (s "Lawvere-Tierney Modalities" "LT-modalities") \myslide {Lawvere-Tierney Modalities} {LT-modalities} A {\sl (Lawvere-Tierney) modality} is an operation `${}^*$' on intuitionistic truth-values obeing the following three axioms: %: %: P|-Q %: ---- ------ ------- %: |-§* P*|-Q* P**|-P* %: %: ^ax*-1 ^ax*-2 ^ax*-3 %: $$\ded{ax*-1} \qquad \ded{ax*-2} \qquad \ded{ax*-3}$$ The supersaturation operation, $P^* := P^\dbul$, is an example of an LT-modality --- but there are others: \msk $P^* := P^{¬¬} := ¬¬P$ $P^* := P^{(\aa∨)} := \aa ∨ P$ $P^* := P^{(\bb⊃)} := \bb ⊃ P$ \msk First theorems: \ssk $P \vdash P^*$ \ssk $(P∧Q)^* \vdash P^*∧Q^*$ \ssk $P∧Q^* \vdash (P∧Q)^*$ $P^*∧Q^* \vdash (P∧Q)^*$ \msk From what we already have, we can prove that $P \Bij Q$ implies $P^* \Bij Q^*$ in a weak sense: %: %: |-P<=>Q |-P<=>Q %: ------- ------- %: |-P⊃Q |-Q⊃P %: ----- ----- %: P|-Q Q|-P %: ------ ------ %: P*|-Q* Q*|-P* %: ------- ------- %: |-P*⊃Q* |-Q*⊃P* %: ----------------- %: |-P*<=>Q* %: %: ^P<=>Q|-P*<=>Q*-weak %: $$\ded{P<=>Q|-P*<=>Q*-weak}$$ But there isn't much that we can do when $P \Bij Q$ is weaker than $§$... For example, if $P:=\dagVee011$ and $Q:=\dagVee101$, then $P \Bij Q=\dagVee001$. \msk We will treat this as an axiom: %: %: -------------- %: P<=>Q|-P*<=>Q* %: %: ^antisymmetry-star %: $$\ded{antisymmetry-star}$$ (Actually this is true for any unary operation on truth-values of a Heyting algebra). \newpage % -------------------- % «LT-modalities-and» (to ".LT-modalities-and") % (s "LT-modalities and `and'" "LT-modalities-and") \myslide {LT-modalities and `and'} {LT-modalities-and} Theorems: \ssk $P \vdash P^*$ \ssk $(P∧Q)^* \vdash P^*∧Q^*$ \ssk $P∧Q^* \vdash (P∧Q)^*$ $P^*∧Q^* \vdash (P∧Q)^*$ \msk Proofs: %: -------- %: P|-§<=>P %: -------- ---------- %: |-§<=>§* P|-§*<=>P* %: ----------------------- %: P|-§<=>P* %: --------- %: P|-P* %: %: ^and*-1 %: %: ------------ %: P|-Q<=>(P∧Q) %: ------ ------ ============== %: P∧Q|-P P∧Q|-Q P|-Q*<=>(P∧Q)* %: ---------- ---------- -------------- %: (P∧Q)*|-P* (P∧Q)*|-Q* P|-Q*⊃(P∧Q)* %: ----------------------- ------------ %: (P∧Q)*|-P*∧Q* P∧Q*|-(P∧Q)* %: %: ^and*-2 ^and*-3 %: %: ============ %: P*∧Q|-(P∧Q)* %: ============== ---------------- --------------- %: P*∧Q*|-(P*∧Q)* (P*∧Q)*|-(P∧Q)** (P∧Q)**|-(P∧Q)* %: --------------------------------------------------- %: P*∧Q*|-(P∧Q)* %: %: ^and*-4 %: $$\ded{and*-1}$$ $$\ded{and*-2} \qquad \ded{and*-3}$$ $$\ded{and*-4}$$ \msk The cube of modalities for `$∧$' has only four different truth-values (the case $P^* := P^{¬¬}$, $P = \dagVee011$, $Q = \dagVee101$ shows that they are all distinct): % %D diagram and-cube %D 2Dx 100 +20 +25 +20 +40 +20 +25 +20 %D 2D 100 P∧Q P∧Q* P∧Q' P∧Q*' %D 2D +20 (P∧Q)* (P∧Q*)* (P∧Q)*' (P∧Q*)*' %D 2D %D 2D +20 P*∧Q P*∧Q* P*∧Q' P*∧Q*' %D 2D +20 (P*∧Q)* (P*∧Q*)* (P*∧Q)*' (P*∧Q*)*' %D 2D %D (( P∧Q P*∧Q P∧Q* P*∧Q* %D (P∧Q)* (P*∧Q)* (P∧Q*)* (P*∧Q*)* %D @ 0 @ 1 -> @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 -> %D @ 4 @ 5 = @ 4 @ 6 = @ 5 @ 7 = @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 -> @ 3 @ 7 = %D )) %D (( P∧Q' P*∧Q' P∧Q*' P*∧Q*' %D (P∧Q)*' (P*∧Q)*' (P∧Q*)*' (P*∧Q*)*' %D @ 0 .tex= \dagVee001 @ 1 .tex= \dagVee101 %D @ 2 .tex= \dagVee011 @ 3 .tex= \dagVee111 %D @ 4 .tex= \dagVee111 @ 5 .tex= \dagVee111 %D @ 6 .tex= \dagVee111 @ 7 .tex= \dagVee111 %D @ 0 @ 1 -> @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 -> %D @ 4 @ 5 = @ 4 @ 6 = @ 5 @ 7 = @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 -> @ 3 @ 7 = %D )) %D enddiagram %D $$\diag{and-cube}$$ \newpage % -------------------- % «LT-modalities-or» (to ".LT-modalities-or") % (s "LT-modalities and `or'" "LT-modalities-or") \myslide {LT-modalities and `or'} {LT-modalities-or} Theorems: \msk %: %: ------ ------ ------------- %: P|-P∨Q Q|-P∨Q P*∨Q*|-(P∨Q)* %: ---------- ---------- ----------------- %: P*|-(P∨Q)* Q*|-(P∨Q)* (P*∨Q*)*|-(P∨Q)** %: ----------------------- ----------------- %: P*∨Q*|-(P∨Q)* (P*∨Q*)*|-(P∨Q)* %: %: ^or*-1 ^or*-2 %: $$\ded{or*-1} \qquad \ded{or*-2}$$ \msk The cube of modalities for `$∨$' has only five different truth-values (the case $P^* := P^{¬¬}$, $P = \dagHouse00001$, $Q = \dagHouse00010$ shows that they are all distinct): % %D diagram or-cube %D 2Dx 100 +20 +25 +20 +40 +20 +25 +20 %D 2D 100 P∨Q P∨Q* P∨Q' P∨Q*' %D 2D +20 (P∨Q)* (P∨Q*)* (P∨Q)*' (P∨Q*)*' %D 2D %D 2D +20 P*∨Q P*∨Q* P*∨Q' P*∨Q*' %D 2D +20 (P*∨Q)* (P*∨Q*)* (P*∨Q)*' (P*∨Q*)*' %D 2D %D (( P∨Q P*∨Q P∨Q* P*∨Q* %D (P∨Q)* (P*∨Q)* (P∨Q*)* (P*∨Q*)* %D @ 0 @ 1 -> @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 -> %D @ 4 @ 5 = @ 4 @ 6 = @ 5 @ 7 = @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 -> @ 3 @ 7 -> %D )) %D (( P∨Q' P*∨Q' P∨Q*' P*∨Q*' %D (P∨Q)*' (P*∨Q)*' (P∨Q*)*' (P*∨Q*)*' %D @ 0 .tex= \dagHouse00011 @ 1 .tex= \dagHouse00111 %D @ 2 .tex= \dagHouse01011 @ 3 .tex= \dagHouse01111 %D @ 4 .tex= \dagHouse11111 @ 5 .tex= \dagHouse11111 %D @ 6 .tex= \dagHouse11111 @ 7 .tex= \dagHouse11111 %D @ 0 @ 1 -> @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 -> %D @ 4 @ 5 = @ 4 @ 6 = @ 5 @ 7 = @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 -> @ 3 @ 7 -> %D )) %D enddiagram %D $$\diag{or-cube}$$ % Here's the tableau that shows that the implication % (P*⊃Q)*⊃(P⊃Q)* % can't be strict when P*:=A∨P - i.e., it describes the % intuitionistic countermodels for (A∨(P⊃Q))⊃(A∨((A∨P)⊃Q)). % % (A∨(P⊃Q))⊃(A∨((A∨P)⊃Q)) % 0 a % 1 Î 00 0 Îb<-a % 1∨ 1 b % 0ý1 ýc<-b % 1 Î0 Îd<-b % 1∨1 d % % Îb<-a.(A1b ∨ (ýc<-b. P0c∨Q1c)) ∧ % (A0b ∧ (Îd<-b. (A1d∨P1d)∧Q0d)) % % Îb<-a. (ýc<-b. P0c∨Q1c) ∧ % (A0b ∧ (Îd<-b. (A1d∨P1d)∧Q0d)) % % Îb<-a. (ýc<-b. P0c) ∧ % (A0b ∧ (Îd<-b. (A1d∨P1d)∧Q0d)) % % Îb<-a. P0b ∧ % A0b ∧ (Îd<-b. A1d∧Q0d) \newpage % -------------------- % «LT-modalities-imp» (to ".LT-modalities-imp") % (s "LT-modalities and implication" "LT-modalities-imp") \myslide {LT-modalities and implication} {LT-modalities-imp} Theorems: %: %: ---------- %: (P⊃Q)∧P|-Q %: -------------- %: ((P⊃Q)∧P)*|-Q* %: -------------- ----------- ------------- %: (P⊃Q)*∧P*|-Q* P⊃Q|-(P⊃Q)* (P⊃Q)*|-P*⊃Q* %: ------------- --------------------------- %: (P⊃Q)*|-P*⊃Q* P⊃Q|-P*⊃Q* %: %: ^imp*-1 ^imp*-2 %: %: --------------- ------- %: P*∧(P⊃Q*)*|-Q** Q**|-Q* %: ------------- ------------------------- %: (P⊃Q)*|-P*⊃Q* P*∧(P⊃Q*)*|-Q* %: ------------- -------------- %: P*∧(P⊃Q)*|-Q* (P⊃Q*)*|-P*⊃Q* %: %: ^imp*-3 ^imp*-4 %: $$\ded{imp*-1} \qquad \ded{imp*-2}$$ $$\ded{imp*-3} \qquad \ded{imp*-4}$$ \msk The cube of modalities for `$⊃$' has only five different truth-values. The case $P^* := \dagSqr0011 ∨ P$, $P = \dagSqr0010$, $Q = \dagSqr0000$ distinguishes them all: % %D diagram imp-cube-Aor %D 2Dx 100 +20 +25 +20 +40 +20 +25 +20 %D 2D 100 P⊃Q P⊃Q* P⊃Q' P⊃Q*' %D 2D +20 (P⊃Q)* (P⊃Q*)* (P⊃Q)*' (P⊃Q*)*' %D 2D %D 2D +20 P*⊃Q P*⊃Q* P*⊃Q' P*⊃Q*' %D 2D +20 (P*⊃Q)* (P*⊃Q*)* (P*⊃Q)*' (P*⊃Q*)*' %D 2D %D (( P⊃Q P*⊃Q P⊃Q* P*⊃Q* %D (P⊃Q)* (P*⊃Q)* (P⊃Q*)* (P*⊃Q*)* %D @ 0 @ 1 <- @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 = %D @ 4 @ 5 <- @ 4 @ 6 -> @ 5 @ 7 -> @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 = @ 3 @ 7 = %D )) %D (( P⊃Q' P*⊃Q' P⊃Q*' P*⊃Q*' %D (P⊃Q)*' (P*⊃Q)*' (P⊃Q*)*' (P*⊃Q*)*' %D @ 0 .tex= \dagSqr0101 @ 1 .tex= \dagSqr0000 %D @ 2 .tex= \dagSqr1111 @ 3 .tex= \dagSqr1111 %D @ 4 .tex= \dagSqr0111 @ 5 .tex= \dagSqr0011 %D @ 6 .tex= \dagSqr1111 @ 7 .tex= \dagSqr1111 %D @ 0 @ 1 <- @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 = %D @ 4 @ 5 <- @ 4 @ 6 -> @ 5 @ 7 -> @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 = @ 3 @ 7 = %D )) %D enddiagram %D $$\diag{imp-cube-Aor}$$ When the modality is $P^* := ¬¬P$ we can't distinguish the four truth-values in the front face of the cube (the `$(P^?⊃Q^?)^*$'s)... The best that we can do is this. For $P^* := ¬¬P$, $P = \dagHouse00001$, $Q = \dagHouse00010$, % %D diagram imp-cube-notnot %D 2Dx 100 +20 +25 +20 +40 +20 +25 +20 %D 2D 100 P⊃Q P⊃Q* P⊃Q' P⊃Q*' %D 2D +20 (P⊃Q)* (P⊃Q*)* (P⊃Q)*' (P⊃Q*)*' %D 2D %D 2D +20 P*⊃Q P*⊃Q* P*⊃Q' P*⊃Q*' %D 2D +20 (P*⊃Q)* (P*⊃Q*)* (P*⊃Q)*' (P*⊃Q*)*' %D 2D %D (( P⊃Q P*⊃Q P⊃Q* P*⊃Q* %D (P⊃Q)* (P*⊃Q)* (P⊃Q*)* (P*⊃Q*)* %D @ 0 @ 1 <- @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 = %D @ 4 @ 5 = @ 4 @ 6 = @ 5 @ 7 = @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 = @ 3 @ 7 = %D )) %D (( P⊃Q' P*⊃Q' P⊃Q*' P*⊃Q*' %D (P⊃Q)*' (P*⊃Q)*' (P⊃Q*)*' (P*⊃Q*)*' %D @ 0 .tex= \dagHouse01011 @ 1 .tex= \dagHouse00011 %D @ 2 .tex= \dagHouse11111 @ 3 .tex= \dagHouse11111 %D @ 4 .tex= \dagHouse11111 @ 5 .tex= \dagHouse11111 %D @ 6 .tex= \dagHouse11111 @ 7 .tex= \dagHouse11111 %D @ 0 @ 1 <- @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 = %D @ 4 @ 5 = @ 4 @ 6 = @ 5 @ 7 = @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 = @ 3 @ 7 = %D )) %D enddiagram %D $$\diag{imp-cube-notnot}$$ \newpage % -------------------- % «tops-for-or-and-imp» (to ".tops-for-or-and-imp") % (s "The topologies for `or' and `implies'" "tops-for-or-and-imp") \myslide {The topologies for `or' and `implies'} {tops-for-or-and-imp} \def\dagRehprime#1#2#3#4#5#6#7{% \dagpicture(26,60)(-10,-36)[16]{ \dagput( 0, 12){$#1$} % top \dagput( 0, 0){$#2$} % second line \dagput(-6,-12){$#3$} % third line, left \dagput( 6,-12){$#4$} % third line, right \dagput( 0,-24){$#5$} % fourth line, left \dagput(12,-24){$#6$} % fourth line, left \dagput( 6,-36){$#7$} % bottom }} $\dagReh0011 ∨ \dagReh???? = \dagReh??11$ $\dagReh0011 ⊃ \dagReh???? = (\dagReh0011 ⊃_c \dagReh????)^o = (¬_c\dagReh0011 ∨_c \dagReh????)^o = (\dagReh1100 ∨_c \dagReh????)^o = (\dagReh11??)^o$ The image of an idempotent operator is its fixset. % $\bhbox{\dagRehprime1234567}$ %D diagram ?? %D 2Dx 100 +20 +20 +20 %D 2D 100 A %D 2D %D 2D +25 B %D 2D %D 2D +20 C D %D 2D %D 2D +20 E F %D 2D %D 2D +20 G %D 2D %D (( A .tex= \dagReh1111 %D B .tex= \dagReh0111 %D C .tex= \dagReh0101 D .tex= \dagReh0011 %D E .tex= \dagReh0001 F .tex= \dagReh0010 %D G .tex= \dagReh0000 %D A B - B C - B D - C E - D E - D F - E G - F G - %D )) %D enddiagram %D diagram ??or %D 2Dx 100 +20 +20 +20 %D 2D 100 A %D 2D %D 2D +25 B %D 2D %D 2D +20 C D %D 2D %D 2D +20 E F %D 2D %D 2D +20 G %D 2D %D (( A .tex= \dagRehprime\x\o\o\o\o\o\o %D B .tex= \dagRehprime\x\x\o\o\o\o\o %D C .tex= \dagRehprime\x\x\x\o\o\o\o D .tex= \dagRehprime\x\x\o\x\o\o\o %D E .tex= \dagRehprime\x\x\x\x\x\o\o F .tex= \dagRehprime\x\x\o\x\o\x\o %D G .tex= \dagRehprime\x\x\x\x\x\x\x %D A B - B C - B D - C E - D E - D F - E G - F G - %D )) %D enddiagram %D diagram ??imp %D 2Dx 100 +20 +20 +20 %D 2D 100 A %D 2D %D 2D +25 B %D 2D %D 2D +20 C D %D 2D %D 2D +20 E F %D 2D %D 2D +20 G %D 2D %D (( A .tex= \dagRehprime\x\x\x\x\x\x\x %D B .tex= \dagRehprime\x\o\x\x\x\x\x %D C .tex= \dagRehprime\x\o\o\x\o\x\o D .tex= \dagRehprime\x\o\x\o\o\x\x %D E .tex= \dagRehprime\x\o\o\o\o\x\o F .tex= \dagRehprime\x\o\x\o\o\o\o %D G .tex= \dagRehprime\x\o\o\o\o\o\o %D A B - B C - B D - C E - D E - D F - E G - F G - %D )) %D enddiagram %D $$\def\o{\bol} \def\x{\bul} \diag{??} \qquad \diag{??or} \qquad \diag{??imp} $$ \newpage % -------------------- % «more-about-not-not» (to ".more-about-not-not") % (s "More about double negation" "more-about-not-not") \myslide {More about double negation} {more-about-not-not} The value of $¬¬P$ depends only on the values of $P$ on the terminal worlds (the ``leaves''). \msk How to see this: \ssk $¬P$ is the opposite of $P$ at the leaf-worlds and is the biggest possible (i.e., as 1-ish as possible) in the other worlds; $¬¬P$ coincides with $P$ at the leaf-worlds and is the biggest possible in the other worlds. %D diagram not-on-leaf-worlds %D 2Dx 100 +40 +40 %D 2D 100 P %D 2D |--> %D 2D +25 P' |--> notP |--> notnotP %D 2D |--> %D 2D +25 P'' %D 2D %D (( P .tex= \dagSeven0001100 %D P'' .tex= \dagSeven0101100 %D P' .tex= \dagSeven???1100 %D notP .tex= \dagSeven0010011 %D notnotP .tex= \dagSeven0101100 %D P notP |-> .plabel= a ¬ %D P' notP |-> .plabel= a ¬ %D P'' notP |-> .plabel= b ¬ %D notP notnotP |-> .plabel= a ¬ %D )) %D enddiagram %D $$\diag{not-on-leaf-worlds}$$ \msk Let's write (temporarily) `${}^?$' for ``apply `${}^*$' or not''. $P^?∧Q^?$ stands for: $P∧Q$, $P∧Q^*$, $P^*∧Q$, $P^*∧Q^*$ --- four truth-values. \msk Fact: when ${}^* = ¬¬$, $(P^?∧Q^?)^*$ is well-defined, $(P^?∨Q^?)^*$ is well-defined, $(P^?⊃Q^?)^*$ is well-defined, $(¬P)^*$ is well-defined --- the outer `${}^*$' dominates everything and makes all inner applications of `${}^*$'s irrelevant. \msk In the cubes from the previous slides, ``the outer `${}^*$' dominates'' means: ``the four truth-values in the front face --- the `$(P^?\text{ op }Q^?)^*$'s --- are all equivalent''. This is not true for the modality $P^* = P^{(\aa∨)} = \aa∨P$! \newpage % -------------------- % «modalities-alt-axioms» (to ".modalities-alt-axioms") % (s "Modalities: alternative axioms" "modalities-alt-axioms") \myslide {Modalities: alternative axioms} {modalities-alt-axioms} A {\sl Lawvere-Tierney topology} is usually defined as an arrow $j: Ø \to Ø$ such that these three diagrams commute: %:*`*\ign * \def\ign#1{} %D diagram LT-topology %D 2Dx 100 +30 +20 +30 +30 +35 %D 2D t j /\ %D 2D 100 1 ----> Ø`0 Ø`2 ----> Ø`3 Ø×Ø -------> Ø %D 2D \ | \ | | | %D 2D t \ | j j \ | j j×j | | j %D 2D \ v \ v v /\ v %D 2D +30 -> Ø`1 -> Ø`4 {Ø×Ø} -----> {Ø} %D 2D %D (( 1 Ø`0 Ø`1 %D @ 0 @ 1 -> .plabel= a t %D @ 0 @ 2 -> .plabel= l t %D @ 1 @ 2 -> .plabel= r j %D )) %D (( Ø`2 Ø`3 Ø`4 %D @ 0 @ 1 -> .plabel= a j %D @ 0 @ 2 -> .plabel= l j %D @ 1 @ 2 -> .plabel= r j %D )) %D (( Ø×Ø Ø {Ø×Ø} {Ø} %D @ 0 @ 1 -> .plabel= a {∧} %D @ 0 @ 2 -> .plabel= l j×j %D @ 1 @ 3 -> .plabel= r j %D @ 2 @ 3 -> .plabel= a {∧} %D )) %D enddiagram %D $$\diag{LT-topology}$$ Which means: $$ Ï[§]=Ï[§^*] \qquad Ï[P^*]=Ï[P^{**}] \qquad Ï[P^*∧Q^*]=Ï[(P∧Q)^*] $$ %: %: ----- ------- ------- ------------- ------------- %: §|-§* P*|-P** P**|-P* P*∧Q*|-(P∧Q)* (P∧Q)*|-P*∧Q* %: %: ^LT-ax-1 ^LT-ax-2 ^LT-ax-3 ^LT-ax-4 ^LT-ax-5 %: $$\ded{LT-ax-1} \qquad \ded{LT-ax-2} \qquad \ded{LT-ax-3}$$ $$\ded{LT-ax-4} \qquad \ded{LT-ax-5}$$ \medskip It is not clear that these axioms (``LT axioms'') are equivalent to the three axioms (``LT-modality axioms'') that we were using before... We know that the modality axioms imply all the LT axioms, but it is not obvious that the modality axioms $§ \vdash §^*$ and \quad $\cded{ax*-2}$ can be proved from the LT axioms... \medskip Here are the proofs: %: %: P|-Q %: ------ %: §|-P⊃Q %: -------- ============ %: P|-§<=>P §|-P<=>(P∧Q) %: ---------- --------------- %: P|-§*<=>P* §|-P*<=>(P*∧Q*) %: ---------- --------------- %: P|-§<=>P* §|-P*⊃Q* %: --------- -------- %: P|-P* P*|-Q* %: %: ^LT-equiv-1 ^LT-equiv-2 %: $$\ded{LT-equiv-1} \qquad \ded{LT-equiv-2}$$ \newpage % -------------------- % «LT-modalities-quants» (to ".LT-modalities-quants") % (s "LT-modalities and the quantifiers" "LT-modalities-quants") \myslide {LT-modalities and the quantifiers} {LT-modalities-quants} Quantifiers: %: %: ------- -------------- %: P|-Îx.P Îx.P*|-(Îx.P)* %: ----------- ------------------ %: P*|-(Îx.P)* (Îx.P*)*|-(Îx.P)** %: -------------- ------------------ %: Îx.P*|-(Îx.P)* (Îx.P*)*|-(Îx.P)* %: %: ^ex*-1 ^ex*-2 %: %: %: ------- %: ýx.P|-P %: ----------- ---------------- %: (ýx.P)*|-P* (ýx.P*)*|-ýx.P** %: -------------- ---------------- %: (ýx.P)*|-ýx.P* (ýx.P*)*|-ýx.P* %: %: ^fa*-1 ^fa*-2 %: $$\ded{ex*-1} \qquad \ded{ex*-2}$$ $$\ded{fa*-1} \qquad \ded{fa*-2}$$ %D diagram ex-square %D 2Dx 100 +40 %D 2D 100 Îx.P Îx.P* %D 2D %D 2D +40 (Îx.P)* (Îx.P*)* %D 2D %D (( Îx.P Îx.P* -> %D (Îx.P)* (Îx.P*)* = %D Îx.P (Îx.P)* -> %D Îx.P* (Îx.P*)* -> %D )) %D enddiagram %D %D diagram fa-square %D 2Dx 100 +40 %D 2D 100 ýx.P ýx.P* %D 2D %D 2D +40 (ýx.P)* (ýx.P*)* %D 2D %D (( ýx.P ýx.P* -> %D (ýx.P)* (ýx.P*)* -> %D ýx.P (ýx.P)* -> %D ýx.P* (ýx.P*)* = %D )) %D enddiagram %D $$\diag{ex-square} \qquad \diag{fa-square}$$ \newpage % -------------------- % «sat-cov-fibration» (to ".sat-cov-fibration") % (s "The fibration of saturated covers" "sat-cov-fibration") \myslide {The fibration of saturated covers} {sat-cov-fibration} \def\bbK{\mathbb{K}} \def\bbV{\mathbb{V}} \def\OKop{\Opens(\bbK^\op)} \def\OOmop{\Opens(Ø^\op)} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} For a DAG $\bbD$, define $\bbD' := \Opens(\bbD)^\op \equiv (\Opens(\bbD), \supseteq)$. For example, when $\bbV := \dagVee***$, we have: %D diagram satcov-fibration %D 2Dx 100 +40 +15 +40 +40 %D 2D 100 _X1 _V -> %D 2D +20 _X0 --------> _W ---> emp1 %D 2D +20 --> _U -------> emp0 %D 2D %D 2D +20 V ---> %D 2D +20 X ----------> W --> \emp %D 2D +20 ----> U ---------> %D 2D %D 2D +20 \bb -> %D 2D +20 \cc %D 2D +20 \aa ------> %D 2D %D (( _X1 .tex= \dagKite11111 y+= -5 %D _X0 .tex= \dagKite01111 %D _U .tex= \dagKite01011 %D _V .tex= \dagKite00111 %D _W .tex= \dagKite00011 %D emp1 .tex= \dagKite00001 %D emp0 .tex= \dagKite00000 y+= 5 %D _X1 _X0 -> _X0 _U -> _X0 _V -> _U _W -> _V _W -> _W emp1 -> emp1 emp0 -> %D )) %D (( X .tex= \foo{X}{\dagVee111} %D U .tex= \foo{U}{\dagVee101} %D V .tex= \foo{V}{\dagVee011} %D W .tex= \foo{W}{\dagVee001} %D \emp .tex= \foo{\emp}{\dagVee000} %D X U -> X V -> U W -> V W -> W \emp -> %D )) %D (( \aa \cc -> \bb \cc -> %D )) %D enddiagram %D % {\def\foo#1#2{#1{\equiv}#2} $\def\foo#1#2{#1{\equiv}#2} % \foo{A}{B} \diag{satcov-fibration} $ % } \msk % Fact: when $Ø$ is a topology % % the DAG $\OOmop$ is a fibration over $Ø$, % % with $\bigcup$ as the projection functor. % % For example, when $Ø := \Opens(\bbV)$ we have: % % % \msk The projection $\bigcup: \OOmop \to Ø$ respects $∧$ and $∨$, i.e., if $\bigcup \calU^\bul = U$ and $\bigcup \calV^\bul = V$ then $\bigcup(\calU^\bul ∨ \calV^\bul) = U∨V$ (this is easy to see), and also $\bigcup(\calU^\bul ∧ \calV^\bul) = U∧V$ (look at each $w Ý \bigcup(\calU^\bul ∧ \calV^\bul)$). \msk Each fiber $\bigcup³U$ is a lattice with top element $\calU^\dbul$. When $Ø$ comes from a finite topology we can take the intersection of all saturated covers of $U$, and this gives a minimal saturated cover for $U$, that we will call $\calU^\bulm$. \msk Fact: $\bulm \dashv \bigcup \dashv \dbul$. %D diagram OKadj %D 2Dx 100 +40 +30 +30 %D 2D 100 \OKop AL -> B --> CR %D 2D ^v^ ^ v ^ %D 2D +30 \bbK A --> BM -> C %D 2D %D (( \OKop .tex= \OOmop \bbK .tex= Ø %D \OKop \bbK <. sl__ .plabel= l *- %D \OKop \bbK -> .plabel= m \bigcup %D \OKop \bbK <- sl^^ .plabel= r ** %D AL .tex= \dagKite01111 A .tex= X %D B .tex= \dagKite01111 BM .tex= X %D CR .tex= \dagKite11111 C .tex= X %D AL B -> B CR -> A BM -> BM C -> %D AL A <.| .plabel= l *- %D B BM |-> .plabel= m \bigcup %D CR C <-| .plabel= r ** %D )) %D enddiagram %D $$\diag{OKadj}$$ \newpage % -------------------- % «embedding» (to ".embedding") % (s "Embedding" "embedding") \myslide {Embedding} {embedding} A topology is a DAG in a natural way: if $V, U Ý \O(X)$, then $V \to U$ iff $V \subseteq U$. We will prefer $\O(X)^\op$ rather than $\O(X)$, for two reasons: one is because then we will have a monotonic function % $$\begin{array}{rrcl} \dnto: & \D & \to & \O(\D)^\op \\ & \aa & \mto & \dnto\aa \end{array} $$ %D diagram D-to-O(D)op %D 2Dx 100 +15 +15 +40 +15 +15 +25 +15 +15 %D 2D 100 X X' %D 2D %D 2D +20 \aa \bb A B A' B' %D 2D %D 2D +20 \cc C C' %D 2D %D 2D +20 O O' %D 2D %D 2D +20 %D 2D %D (( \aa \cc -> \bb \cc -> %D )) %D (( X .tex= \{\aa,\bb,\cc\} %D A .tex= \{\aa,\cc\} B .tex= \{\bb,\cc\} %D C .tex= \{\cc\} %D O .tex= \emp %D X A -> X B -> A C -> B C -> C O -> %D )) %D (( X' .tex= \dagVee111 %D A' .tex= \dagVee101 B' .tex= \dagVee011 %D C' .tex= \dagVee001 %D O' .tex= \dagVee000 %D X' A' -> X' B' -> A' C' -> B' C' -> C' O' -> %D )) %D (( \bb relphantom 5 8 A relphantom -10 8 -> %D B relphantom 8 8 A' relphantom -3 8 = %D )) %D enddiagram %D $$\diag{D-to-O(D)op}$$ \newpage % -------------------- % «geometric-morphisms» (to ".geometric-morphisms") % (s "Geometric morphisms" "geometric-morphisms") \myslide {Geometric morphisms} {geometric-morphisms} %:***** The obvious continuous function $f: 3 \to \bbV$ induces a geometric morphism, $(f^* \dashv f_*): \Set^3 \to \Set^V$. It is essential: $f^! \dashv f^* \dashv f_*$. %D diagram gm-1 %D 2Dx 100 +15 +15 %D 2D 100 a b %D 2D +20 c %D 2D %D (( a .tex= A_\aa b .tex= A_\bb c .tex= A_\cc %D a place b place c place %D )) %D enddiagram %D diagram gm-2 %D 2Dx 100 +20 +20 %D 2D 100 a b %D 2D +20 c %D 2D %D (( a .tex= A_\aa b .tex= A_\bb c .tex= A_\aa{+}A_\bb{+}A_\cc %D a c -> b c -> %D )) %D enddiagram %D diagram gm-3 %D 2Dx 100 +15 +15 %D 2D 100 a b %D 2D +20 c %D 2D %D (( a .tex= B_\aa b .tex= B_\bb c .tex= B_\cc %D a place b place c place %D )) %D enddiagram %D diagram gm-4 %D 2Dx 100 +20 +20 %D 2D 100 a b %D 2D +20 c %D 2D %D (( a .tex= B_\aa b .tex= B_\bb c .tex= B_\cc %D a c -> b c -> %D )) %D enddiagram %D diagram gm-5 %D 2Dx 100 +15 +15 %D 2D 100 a b %D 2D +20 c %D 2D %D (( a .tex= C_\aa b .tex= C_\bb c .tex= C_\cc %D a place b place c place %D )) %D enddiagram %D diagram gm-6 %D 2Dx 100 +20 +20 %D 2D 100 a b %D 2D +20 c %D 2D %D (( a .tex= C_\aa{×}C_\cc b .tex= C_\bb{×}C_\cc c .tex= C_\cc %D a c -> b c -> %D )) %D enddiagram %D diagram gm-example %D 2Dx 100 +75 %D 2D 100 A B %D 2D %D 2D +60 C D %D 2D %D 2D +60 E F %D 2D %D 2D +40 \Set^3 \Set^bbV %D 2D %D (( A .tex= \usebox{\myboxa} %D B .tex= \usebox{\myboxb} %D C .tex= \usebox{\myboxc} %D D .tex= \usebox{\myboxd} %D E .tex= \usebox{\myboxe} %D F .tex= \usebox{\myboxf} %D A B |-> .plabel= a f_! %D A C -> B D -> A D harrownodes nil 20 nil <-> %D C D <-| .plabel= a f^* %D C E -> D F -> C F harrownodes nil 20 nil <-> %D E F |-> .plabel= a f_* %D )) %D (( \Set^3 \Set^bbV %D @ 0 @ 1 -> sl^^ .plabel= a f_! %D @ 0 @ 1 <- .plabel= m f^* %D @ 0 @ 1 -> sl__ .plabel= b f_* %D )) %D enddiagram %D $$\savebox{\myboxa}{$\diag{gm-1}$} \savebox{\myboxb}{$\diag{gm-2}$} \savebox{\myboxc}{$\diag{gm-3}$} \savebox{\myboxd}{$\diag{gm-4}$} \savebox{\myboxe}{$\diag{gm-5}$} \savebox{\myboxf}{$\diag{gm-6}$} \diag{gm-example} $$ A simpler example: %D diagram gm-example-2 %D 2Dx 100 +40 %D 2D 100 A B %D 2D %D 2D +25 C D %D 2D %D 2D +25 E F %D 2D %D 2D +25 \Set^2 \Set^2{} %D 2D %D (( A .tex= (A,A') %D B .tex= (A+A',0) %D C .tex= (B,B') %D D .tex= (B,B) %D E .tex= (C,C') %D F .tex= (C×C',1) %D A B |-> .plabel= a g_! %D A C -> B D -> A D harrownodes nil 20 nil <-> %D C D <-| .plabel= a g^* %D C E -> D F -> C F harrownodes nil 20 nil <-> %D E F |-> .plabel= a g_* %D )) %D (( \Set^2 \Set^2{} %D @ 0 @ 1 -> sl^^ .plabel= a g_! %D @ 0 @ 1 <- .plabel= m g^* %D @ 0 @ 1 -> sl__ .plabel= b g_* %D )) %D enddiagram %D $$\diag{gm-example-2}$$ %:****^{**}* %:***^** %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: