Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008induction.tex") % http://angg.twu.net/LATEX/2008induction.tex.html % http://angg.twu.net/LATEX/2008induction.pdf % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008induction.tex && latex 2008induction.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008induction.tex && pdflatex 2008induction.tex")) % (eev "cd ~/LATEX/ && Scp 2008induction.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2008induction.dvi") % (find-pspage "~/LATEX/2008induction.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -P pk -o 2008induction.ps 2008induction.dvi") % (find-pspage "~/LATEX/2008induction.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2008induction.pdf" (ee-twupfile "LATEX/2008induction.pdf") 'over) % (ee-cp "~/LATEX/2008induction.pdf" (ee-twusfile "LATEX/2008induction.pdf") 'over) % «.e-mail» (to "e-mail") % «.incr-and-decr» (to "incr-and-decr") % «.types» (to "types") % «.definitions» (to "definitions") % «.cases-0-1-9» (to "cases-0-1-9") % «.cases-0-1-9-2» (to "cases-0-1-9-2") % «.lemmas» (to "lemmas") % «.proofs-5-to-11» (to "proofs-5-to-11") % «.proofs-12-to-15ppp» (to "proofs-12-to-15ppp") % «.proofs-16-to-19» (to "proofs-16-to-19") % «.proofs-20-to-23» (to "proofs-20-to-23") % «.interval-lemmas» (to "interval-lemmas") % «.interval-induction» (to "interval-induction") % «.interval-induction-2» (to "interval-induction-2") % «.interval-induction-3» (to "interval-induction-3") % «.intervals» (to "intervals") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2008induction.dnt %* % (eedn4-51-bounded) Index of the slides: \msk % To update the list of slides uncomment this line: \makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {E-mail} {2} \tocline {Increasing and decreasing} {3} \tocline {L1, L2, Types} {4} \tocline {Definitions} {5} \tocline {Cases 0, 1 and 9} {6} \tocline {Cases 0, 1 and 9 (2)} {7} \tocline {Lemmas} {8} \tocline {Proofs (5 to 11)} {9} \tocline {Proofs (12 to 15${}'''$)} {10} \tocline {Proofs (16 to 19)} {11} \tocline {Proofs (20 to 23)} {12} \tocline {Interval lemmas} {13} \tocline {Induction in intervals} {14} \tocline {Induction in intervals (2)} {15} \tocline {Intervals} {16} % (defun a () (interactive) (insert "$\\begin{array}{lcl}\n \\end{array}\n$\n")) \def\N{\mathbb{N}} \def\Zer{\ensuremath{\mathsf{Zer}}} \def\Inj{\ensuremath{\mathsf{Inj}}} \def\Ind{\ensuremath{\mathsf{Ind}}} \def\ang#1{\langle#1\rangle} \def\Pts{\mathcal{P}} \def\neto{\nearrow} \def\neto{{\nearrow}} \def\seto{\searrow} \def\seto{{\searrow}} \def\notS{\begin{picture}(0,0)\put(0,1){$\not{}$}\end{picture}S} \def\epito{\twoheadrightarrow} \def\nepito{\not\twoheadrightarrow} \def\isdisjoint{\text{ is disjoint}} \def\different{\text{ different}} \def\covers{\text{ covers }} \newpage % -------------------- % «e-mail» (to ".e-mail") % (s "E-mail" "e-mail") \myslide {E-mail} {e-mail} {\myttchars \footnotesize \begin{verbatim} Tenho boas notícias sim... vou dar um resumo. O Petrúcio tava tentando fazer todas as provas numa linguagem - que eu chamo de "L1" - que não tem conjuntos, interseções, uniões, etc. Eu tava usando uma linguagem - "L2" - que permite tudo isso e algumas coisas mais, e que pra mim era óbvio que tudo que eu fizesse em L2 podia ser traduzido para L1... Bom, eu formalizei essa L2 - não totalmente ainda, mas acho que suficiente bem - e a tradução dela para L1, e tenho um monte de lemas interessantes cujas provas em L2 são curtíssimas e bem intuitivas... e isto inclui vários pedaços da demonstração de que aquela construção do Petrúcio prova Ind |- Zer \/ Inj. Essa outra abordagem daqui me pareceu ainda mais natural. Como sempre, tudo fica mais fácil com um exemplo ("dever de casa pro leitor: generalize" - só que como eu não tou dando detalhes suficientes esse dever de casa não é pra ser levado a sério). Imaginem que o nosso N é isso aqui: 0->1->2->3->4->5->6->4 eu encontrei um modo de caracterizar os elementos do loop (i.e., {4, 5, 6}) e o primeiro cara de fora do loop que aponta pro loop (o 3), usando L2 - e portanto, com a tradução, tenho um modo de fazer tudo isso em L1... daí dá pra provar que o 4 tem dois antecessores. Ainda não chequei todos os detalhes do que eu vou dizer agora, mas lá vai... Eu chamo de "L" a construção que me dá esse loop, de "[a,\infty)" a construção que me dá todos os sucessores de a, e de "\notS A" a construção que me retorna todos os elementos de A cujo sucessor não está em A. Então nesse caso L(0) = {4, 5, 6}, [0,\infty) \ L(0) = {1, 2, 3}, \notS([0,\infty) \ L(0)) = {3}, e o sucessor do 3 é o único cara de [0,\infty) que pode ter mais de um predecessor em [0,\infty) - um dentro do loop e um fora. No caso em que eu tenho um w com w->0 (por ~Zer) e vale Inj, então todo mundo pertence a [0,\infty), inclusive o w; aí eu vou ter L(0) = todo mundo, [0,\infty) \ L(0) = vazio, e não vou poder ter um cara com dois predecessores... ou seja, Inj (o "Inj de verdade", sobre o N todo), vai valer. Depois vou escrever os detalhes direito. [[]]s, té quinta, E. \end{verbatim} } \newpage % -------------------- % «incr-and-decr» (to ".incr-and-decr") % (s "Increasing and decreasing" "incr-and-decr") \myslide {Increasing and decreasing} {incr-and-decr} We will say that a predicate $P$ on $N$ is ``non-decreasing'' when $ýx.Px⊃PSx$, and ``non-increasing'' when $ýx.PSx⊃Px$; obviously, the idea is that the characteristic function of a predicate on $N$ may be non-decreasing or non-increasing (for each arrow $x \to Sx$), and we are making these terms apply to predicates too. Notation: % $$\begin{array}{rclll} \neto P & := & ýx.Px⊃PSx && \text{(non-decreasing)}, \\ \seto P & := & ýx.PSx⊃Px && \text{(non-increasing)}. \\ \end{array} $$ Note that $\neto P \Bij \seto (¬P)$. We can define the set of successors of $a$ and the set of predecessors of $b$ as: % $$\begin{array}{rclll} x Ý [a,‚) & := & ýA. Aa ∧ \neto A ⊃ Ax \\ x Ý (-‚,b] & := & ýB. Bb ∧ \seto A ⊃ Bx \\ \end{array} $$ It is easy to see that $\neto(Ý[a,‚))$ and that $\seto(Ý(-‚,b])$. Lemma: $bÝ[a,‚) \Bij aÝ(-‚,b]$. Proof: % $$\begin{array}{rcl} bÝ[a,‚) & \equiv & ýA. Aa ∧ \neto A ⊃ Ab \\ aÝ(-‚,b] & \equiv & ýB. Bb ∧ \seto A ⊃ Ba \\ & \equiv & ýA. ¬Ab ∧ \neto A ⊃ ¬Aa \\ & \equiv & ýA. Aa ∧ \neto A ⊃ Ab. \\ \end{array} $$ Now let's define the ``closed interval'' $[a,b]$. This will be like $[a,‚)$, except that the characteristic function will be allowed to decrease at the arrow $b \to Sb$; when $b \notin [a,‚)$ we will have $[a,b]=[a,‚)$. % $$\begin{array}{rclll} x Ý [a,b] & := & ýA. Aa ∧ (ýx \neq b.Px⊃PSx) ⊃ Ax \\ \end{array} $$ Lemma: if $Sb \in [0,b]$ then $[0,b]=[0,‚)$. Proof: straightforward (look at the arrow $b \to Sb$). Lemma: if $xÝ[a,b]$ and $Sx \notin [a,b]$ then $x=b$. Proof: straightforward. % \msk % % Now suppose that $\ang{N, 0, S}$ is a DP-structure in which $\Ind$ % holds. $\Ind$ means that $N = [0,‚)$ (i.e., all elements of $N$ are % successors of 0). % % Definition: a wabc-structure is a DP-structure with four extra % constants, $w, a, b, c$, in which $\Ind$ holds, and where $Sw=0$ and % $Sa=Sb=c$. Note that $\Ind$ implies that $w,a,b,c \in [0,‚)$. % % In a wabc-structure we have: % % % $$\begin{array}{c} % {} [0,‚) = [0,w] = (-‚,w] = (-‚,0], \\ % {} [0,a]þ\{c\} = [0,c] = [0,b]þ\{c\} \\ % \end{array} % $$ % % {\it (oops, the last line is wrong...)} % % (Note that a closed interval $[0,x]$ in a wabc-structure either is the % whole $N$ or has a ``last element'' whose successor is not in the % interval... and that element is necessarily $x$.) \newpage % -------------------- % «types» (to ".types") % (s "L1, L2, Types" "types") \myslide {L1, L2, Types} {types} \large Conventions: $\begin{array}{lcl} x,y &:& N \\ P,Q &:& Ø \\ A,B &:& \Pts(N) \text{\;\;(i.e., $N \to Ø$)} \\ \calA,\calB &:& \Pts(\Pts(N)) \text{\;\;(i.e., $(N \to Ø) \to Ø$)} \\ \end{array} $ L1: $\begin{array}{lcl} x,0,Sx &:& N \\ §,®,¬P,P∧Q,P⊃Q,P∨Q &:& Ø \\ Ax, x=y &:& Ø \\ ýx.P, Îx.P &:& Ø \\ ýA.P, ÎA.P &:& Ø \\ \end{array} $ L1'': $\begin{array}{lcl} ýx \in N.P, Îx\in N.P &:& Ø \\ ýA \subseteq N.P, ÎA \subseteq N.P &:& Ø \\ \end{array} $ L2: $\begin{array}{lcl} \emp, N, AÌB, AþB, A \bsl B &:& \Pts(N) \\ \{a\}, \{a,b\}, \ldots &:& \Pts(N) \\ \emp, \Pts(A), \calAÌ\calB, \calAþ\calB, \calA\bsl\calB &:& \Pts(\Pts(N)) \\ \sst{aÝN}{P}, \bigcap\calA, \bigcup\calB &:& \Pts(N) \\ ýA \subseteq N.P, ÎA \subseteq N.P &:& Ø \\ \sst{A\subseteq N}{P} &:& \Pts(\Pts(N)) \\ x Ý A &:& Ø \\ A Ý \calA &:& Ø \\ \end{array} $ Extras: $\begin{array}{lcl} [a,‚), \, (-‚,b], \, [a,b] &:& \Pts(N) \\ \neto A, \seto A &:& Ø \\ \notS A &:& \Pts(A) \\ La, a \to b, a \epito b, &:& Ø \\ a \le b, a < b, a \sim b &:& Ø \\ L^9a, L'a, L^¢a &:& \Pts(N) \\ \Ind, \Inj, \Zer &:& Ø \\ \end{array} $ \newpage % -------------------- % «definitions» (to ".definitions") % (s "Definitions" "definitions") \myslide {Definitions} {definitions} Definitions: $\begin{array}{lcl} aÝA &:=& Aa \\ AÝ\calA &:=& \calA A \\ \sst{x}{P} &:=& ðx¨N.P \\ N &:=& ðx¨N.§ \\ \emp &:=& ðx¨N.® \\ \sof{a,b} &:=& \sst{x}{x=a∨x=b} \\ AÌB &:=& \sst{x}{xÝA ∧ xÝB} \\ AþB &:=& \sst{x}{xÝA ∨ xÝB} \\ A \bsl B &:=& \sst{x}{xÝA ∧ ¬xÝB} \\ \sst{A}{P} &:=& ðA.P \\ \bigcup\calA &:=& \sst{x}{ÎAÝ\calA.xÝA} \\ \bigcap\calA &:=& \sst{x}{ýAÝ\calA.xÝA} \\ \neto A &:=& ýx.xÝA⊃SxÝA \\ \seto A &:=& ýx.SxÝA⊃xÝA \\ {}[a,‚) &:=& \bigcap\sst{A}{aÝA ∧ \neto A} \\ {}[-‚,b) &:=& \bigcap\sst{B}{bÝB ∧ \seto B} \\ % {}[a,b] &:=& \bigcap\sst{A}{aÝA ∧ (ýx \neq b.xÝA⊃SxÝA)} \\ \notS A &:=& \sst{aÝA}{Sa \notin A} \\ La &:=& a Ý [Sa,‚) \\ % L^9a &:=& [a,‚) \\ L^¢a &:=& \sst{bÝ[a,‚)}{Lb} \\ L'a &:=& \sst{bÝ[a,‚)}{¬Lb} \\ a \to b &:=& Sa = b \\ a \epito b &:=& [a,‚) \ni b \\ % a \le b &:=& [a,‚) \supseteq [b,‚) \\ % a < b &:=& [a,‚) \supsetneq [b,‚) \\ % a \sim b &:=& [a,‚) = [b,‚) \\ \calA \isdisjoint &:=& ýA,BÝ\calA.A \neq B \funto AþB=\emp \\ \calA \covers a \to Sa &:=& ÎAÝ\calA.\{a,Sa\} \subseteq A \\ {} [a,b] &:=& \bigcap\sst{A}{aÝA ∧ ýxÝA\bsl\{b\}.SxÝA} \\ {} [a,bc] &:=& \bigcap\sst{A}{aÝA ∧ ýxÝA\bsl\{b,c\}.SxÝA} \\ \end{array} $ \msk % Theorem: if $c,dÝ[a,‚)$ then $c \epito d ∨ d \epito c$. % % Proof: suppose that $c,dÝ[a,‚)$ and $¬(c \epito d)$ and $¬(d \epito % c)$, and define: % % % $$B := \sst{bÝ[a,‚)}{b \epito c ∧ c \epito d}.$$ % % Then $aÝB$, $\neto B$, and so $[a,‚) \subseteq B$; % % but $c,d \notin B$, which contradicts $c,dÝ[a,‚)$. % % \msk % % Theorem: the elements in $L^¢a$ are all $\sim$-equivalent. % % Theorem: the elements in $L^9a/\sim$ are linearly ordered. % % \msk % Theorem: each element $cÝL'a$, $c \neq a$, has exactly one predecessor in $L'a$. % % Proof: the predecessor is $\notS (L^9a \bsl \{c\})$ (...) % % \msk % % Theorem: each element $cÝL^¢a$ has exactly one predecessor in $cÝL^¢a$. % % Proof: the predecessor is $\notS (L^¢a \bsl \{c\})$ (...) % % \msk % % Theorem: if $L'a \neq \emp$ and $L^¢a \neq \emp$ then $L'a$ has a last element --- % % namely, $\notS L'a$. \newpage % -------------------- % «cases-0-1-9» (to ".cases-0-1-9") % (s "Cases 0, 1 and 9" "cases-0-1-9") \myslide {Cases 0, 1 and 9} {cases-0-1-9} We say that $b$ {\sl is in a loop} --- and we write this as $Lb$ --- when $Sb \epito b$, i.e., when $bÝ[Sb,‚)$. With the predicate $L$ we can split $[a,‚)$ in two disjoint parts: a ``linear part'', $L'a$, and a ``loop part'', $L^¢a$, that are defined as: % $$\begin{array}{rcl} L'a &:=& \sst{bÝ[a,‚)}{¬Lb} \\ L^¢a &:=& \sst{bÝ[a,‚)}{Lb} \\ \end{array} $$ Theorem: $[a,‚)$ is either a loop, an infinite straight line, or a ``nine''. We will call these cases ``0'', ``1'' and ``9'', according to the shapes of the numbers. {\myttchars %\footnotesize \normalsize \begin{verbatim} . <- ... <- . <- <- w . -> -> a -> . -> . -> . Case 0 a -> . -> . -> ... Case 1 ... <- <- c . -> -> a -> . -> ... -> b -> d -> . \________ ______/ \____ ____/ \/ \/ L'a L°a Case 9 \end{verbatim} } \newpage % -------------------- % «cases-0-1-9-2» (to ".cases-0-1-9-2") % (s "Cases 0, 1 and 9 (2)" "cases-0-1-9-2") \myslide {Cases 0, 1 and 9 (2)} {cases-0-1-9-2} If $a=0$ and $\Ind$ holds, then $[a,‚)$ is the whole universe (i.e., $N$). We want to show that $¬\Zer$ only holds in the case ``0'', and that $¬\Inj$ only holds in the case ``9''. \msk Lemmas: $L^¢a$ is a single loop: for $b,cÝL^¢a$ we have $b \epito c$ and $c \epito b$. A loop is a sink: there may be arrows from $L'a$ to $L^¢a$, but no arrows leave $L^¢a$ back to $L'a$. $L'a$ is linearly ordered: $b,cÝL'a$ either $b \epito c$ and $c \epito b$ hold, and if both $b \epito c$ and $c \epito b$ hold then $b=c$. Each element $\neq a$ of $L'a$ has exactly one predecessor (in $L'a$). \ssk $\upto$ {\sl [ I have not proved this yet!]} \ssk $L'a$ has a last element if and only if we are in the case ``9''; and this last element (`$b$' in the figure), when it exists, is unique. The successor of the last element of $L'a$ is in the loop part (the arrow $b \to d$ in the figure for the case ``9''). Every element in a loop has a predecessor in the loop (arrows $w \to a$ in the figure ``0'', $c \to d$ in the figure ``9''); this shows that $\Inj$ fails in the case ``9''. \ssk {\sl [I have not shown yet that the predecessor-in-the-loop is unique... I will need that to show that $\Inj$ holds in ``0'']} \ssk In the cases ``1'' and ``9'' the element $a$ (i.e., 0) has no predecessor --- i.e., $\Zer$ holds. \large \newpage % -------------------- % «lemmas» (to ".lemmas") % (s "Lemmas" "lemmas") \myslide {Lemmas} {lemmas} $\begin{array}{rl} (1) & \neto[a,‚) \\ (2) & \seto(-‚,b] \\ (3) & \neto A \Bij \seto(N \bsl A) \\ (4) & bÝ[a,‚) \Bij aÝ(-‚,b] \\ \\ (5) & [a,‚) = \{a\}þ[Sa,‚) \\ (6) & a \epito b \Bij [a,‚) \supseteq [b,‚) \\ (7) & a \epito b, b \epito a \Bij [a,‚) = [b,‚) \\ (8) & a \epito b \funto Sa \epito Sb \\ (9) & La \Bij [a,‚) = [Sa,‚) \\ (10) & La \funto LSa \\ %(11) & \notS(-‚,b] = \emp \Bij Lb \\ (11) & \neto(-‚,b] \Bij Lb \\ \\ (12) & a \neq b, a \epito b \funto Sa \epito b \\ (13) & \notS(-‚,b] \subseteq \{b\} \\ (14) & La \funto [a,‚) \subseteq (-‚,a] \\ (15) & La, a \epito b \funto b \epito a \\ (15') & La, a \epito b \funto Lb \\ (15'') & La, a \epito b, a \epito c \funto b \epito c ∧ c \epito b \\ (15''') & La, a \epito b \funto [a,‚)=[b,‚) \\ \\ (16) & c \nepito d, d \nepito c \funto \neto\sst{b}{b \epito c ∧ b \epito d} \\ (17) & a \epito c, a \epito d, c \nepito d, d \nepito c \funto ® \\ (18) & a \epito c, a \epito d \funto c \epito d ∨ d \epito c \\ (19) & a \epito c, a \epito d, Lc, Ld \funto c \epito d ∧ d \epito c \\ \\ (20) & L'a \neq \emp, L^¢a \neq \emp \funto \notS L'a \neq \emp \\ (21) & b,cÝ\notS L'a, b \neq c, b \epito c \funto ® \\ (22) & b,cÝ\notS L'a, \funto b=c \\ (23) & Ld, Sd \neq d \funto \notS([d,‚)\bsl\{d\}) \neq \emp \\ \end{array} $ \newpage % -------------------- % «proofs-5-to-11» (to ".proofs-5-to-11") % (s "Proofs (5 to 11)" "proofs-5-to-11") \myslide {Proofs (5 to 11)} {proofs-5-to-11} %:*.<=.*\subseteq * %:*.>=.*\supseteq * %:*->>*\epito * %:*!->>*\nepito * %:*<<-*\epiot * %:*!=*\neq * %: *b->>cd*b \epito c ∧ b \epito d* %: %: SaÝ[a,‚) \neto[a,‚) %: --------------------- %: aÝ(\{a\}þ[Sa,‚)) \neto(\{a\}þ[Sa,‚)) aÝ[a,‚) [Sa,‚).<=.[a,‚) %: -------------------------------------- --------------------------- %: [a,‚).<=.\{a\}þ[Sa,‚) \{a\}þ[Sa,‚).<=.[a,‚) %: %: ^i-5.1 ^i-5.2 %: %: a->>b [a,‚).>=.[b,‚) %: ------- ---------- -------------- %: bÝ[a,‚) \neto[a,‚) [a,‚)\ni"b %: ------------------- ---------- %: [b,‚).<=.[a,‚) a->>b %: %: ^i-6.1 ^i-6.2 %: %: a->>b b->>a [a,‚)=[b,‚) [a,‚)=[b,‚) %: -------------- -------------- -------------- -------------- %: [a,‚).>=.[b,‚) [b,‚).>=.[a,‚) [a,‚).>=.[b,‚) [a,‚).<=.[b,‚) %: ------------------------------- -------------- -------------- %: [a,‚)=[b,‚) a->>b b->>a %: %: ^i-7.1 ^i-7.2 ^i-7.3 %: %: [bÝ\{a\}]^1 %: ----------- %: a->>b b=a %: ------- ----- ----------- %: bÝ[a,‚) Sb=Sa [bÝ[Sa,‚)]^1 \neto[Sa,‚) %: -------------- --------- ------------------------- %: bÝ\{a\}þ[Sa,‚) SbÝ[Sa,‚) SbÝ[Sa,‚) %: --------------------------------------------1 ----------- %: SbÝ[Sa,‚) \neto[Sa,‚) %: ----------------------------------------------- %: [Sb,‚).<=.[Sa,‚) %: ---------------- %: Sa->>Sb %: %: ^i-8 %: %: La [a,‚)=[Sa,‚) %: ------ ------ ------------ %: Sa->>a a->>Sa aÝ[Sa,‚) %: --------------- --------------- -------- %: [Sa,‚).>=.[a,‚) [a,‚).>=.[Sa,‚) Sa->>a %: --------------------------------- ------ %: [a,‚)=[Sa,‚) La %: %: ^i-9.1 ^i-9.2 %: %: La %: ------ %: Sa->>a %: -------- %: SSa->>Sa %: -------- %: LSa %: %: ^i-10 %: %: [bÝ(-‚,a]]^1 %: ------------ %: b->>a La %: ------- ------ -------- %: Sb->>Sa Sa->>a aÝ(-‚,a] \neto(-‚,a] %: ----------------- --------------------- %: Sb->>a SaÝ(-‚,a] %: --------- --------- %: SbÝ(-‚,a] Sa->>a %: -----------1 ------ %: \neto(-‚,a] La %: %: ^i-11.1 ^i-11.2 %: $$\ded{i-5.1} \qquad \ded{i-5.2}$$ $$\ded{i-6.1} \qquad \ded{i-6.2}$$ $$\ded{i-7.1} \qquad \ded{i-7.2} \qquad \ded{i-7.3}$$ $$\ded{i-8}$$ $$\ded{i-9.1} \qquad \ded{i-9.2}$$ $$\ded{i-10}$$ $$\ded{i-11.1} \qquad \ded{i-11.2}$$ \newpage % -------------------- % «proofs-12-to-15ppp» (to ".proofs-12-to-15ppp") % (s "Proofs (12 to 15${}'''$)" "proofs-12-to-15ppp") \myslide {Proofs (12 to 15${}'''$)} {proofs-12-to-15ppp} %: a->>b %: -------------- %: b!=a bÝ\{a\}þ[Sa,‚) %: --------------------- %: bÝ[Sa,‚) %: -------- %: Sa->>b %: %: ^i-12 %: %: [aÝ(-‚,b]\bsl\{b\}]^1 %: --------------------- %: [aÝ(-‚,b]\bsl\{b\}]^1 aÝ(-‚,b] %: --------------------- -------- %: a!=b a->>b %: ------------------------------- %: Sa->>b %: --------- %: SaÝ(-‚,b] %: --------------------1 %: \notS(-‚,b].<=.\{b\} %: %: ^i-13 %: %: La %: -------- ----------- %: aÝ(-‚,a] \neto(-‚,a] %: ---------------------- %: [a,‚).<=.(-‚,a] %: %: ^i-14 %: %: La %: --------------- %: [a,‚).<=.(-‚,a] %: ----------------- %: bÝ[a,‚)=>bÝ(-‚,a] %: ----------------- %: a->>b=>b->>a %: %: ^i-15 %: %: %: La a->>b %: --------- %: b->>a La %: ------- ------ %: Sb->>Sa Sa->>a a->>b %: ------------------------ %: Sb->>b %: ------ %: Lb %: %: ^i-15' %: %: La a->>b La a->>c %: --------- --------- %: b->>a a->>c c->>a a->>b %: -------------- -------------- %: b->>c c->>b %: ----------------------- %: b->>c∧c->>b %: %: ^i-15'' %: %: La a->>b %: --------- %: a->>b b->>a %: -------------- %: [a,‚)=[b,‚) %: %: ^i-15''' %: %: $$\ded{i-13}$$ $$\ded{i-14}$$ $$\ded{i-15}$$ $$\ded{i-15'}$$ $$\ded{i-15''}$$ $$\ded{i-15'''}$$ \newpage % -------------------- % «proofs-16-to-19» (to ".proofs-16-to-19") % (s "Proofs (16 to 19)" "proofs-16-to-19") \myslide {Proofs (16 to 19)} {proofs-16-to-19} %: [b->>d]^1 c!->>d [b->>c]^1 d!->>c %: ----------------- ----------------- %: b!=c [b->>c]^1 b!=d [b->>d]^1 %: ---------------------- ----------------------- %: Sb->>c Sb->>d %: ---------------------------------1 %: \neto\sst{b}{b->>c∧b->>d} %: %: ^i-16 %: %: a->>c a->>d c!->>d d!->>c %: ----------------- -------------------- %: a->>c a->>d aÝ\sst{b}{b->>cd} \neto\sst{b}{b->>cd} %: ------------ ---------------------------------------- %: c,dÝ[a,‚) [a,‚).<=.\sst{b}{b->>cd} c!->>d d!->>c %: ------------------------------------------- ----------------------- %: c,dÝ\sst{b}{b->>cd} c,d\notin\sst{b}{b->>cd} %: ---------------------------------------------------------------- %: ® %: %: ^i-17 %: a->>c a->>d %: ---------------- %: c!->>d∧d!->>c=>® %: ---------------- %: ¬(c!->>d∧d!->>c) %: ---------------- %: ¬(¬c->>d∧¬d->>c) %: ---------------- %: ¬¬(c->>d∨d->>c) %: --------------- %: c->>d∨d->>c %: %: ^i-18 %: %: Lc [c->>d]^1 Ld [d->>c]^1 %: ------------- ------------- %: a->>c a->>d [c->>d]^1 d->>c c->>d [d->>c]^1 %: ------------ ------------------ --------------------- %: c->>d∨d->>c c->>d∧d->>c c->>d∧d->>c %: ------------------------------------------------------------1 %: c->>d∧d->>c %: %: ^i-19 %: $$\ded{i-16}$$ $$\ded{i-17}$$ $$\ded{i-18}$$ $$\ded{i-19}$$ \newpage % -------------------- % «proofs-20-to-23» (to ".proofs-20-to-23") % (s "Proofs (20 to 23)" "proofs-20-to-23") \myslide {Proofs (20 to 23)} {proofs-20-to-23} %: L'a!=\emp [\notS"L'a=\emp]^1 %: --------- ------------------ %: aÝL'a \neto"L'a %: --------------------- ------------ %: [a,‚).<=.L'a L'a.<=.[a,‚) %: ----------------------------------- %: L'a=[a,‚) %: --------- %: L^¢a=\emp L^¢a!=\emp %: ------------------------------------- %: ® %: ---------------1 %: \notS"L'a!=\emp %: %: ^i-20 %: %: bÝ\notS"L'a b!=c b->>c cÝ\notS"L'a %: ---------- ----------- ----------- %: a->>Sb Sb->>c cÝL'a bÝ\notS"L'a %: --------------------------------- ------------ %: SbÝL'a Sb\notin"L'a %: -------------------------------------- %: ® %: %: ^i-21 %: %: b,cÝ\notS"L'a %: ------------- %: b,cÝL'a %: --------- %: b,cÝ[a,‚) b,cÝ\notS"L'a [b!=c]^2 [b->>c]^1 b,cÝ\notS"L'a [b!=c]^2 [b->>c]^1 %: ----------- ---------------------------------- ---------------------------------- %: b->>c∨c->>b ® ® %: -----------------------------------------------------------------1 %: ® %: ---2 %: b=c %: %: ^i-22 %: %: Sd!=d [\notS([d,‚)\bsl\{d\})=\emp]^1 %: ------------------- ------------------------------ %: Ld SdÝ([d,‚)\bsl\{d\}) \neto([d,‚)\bsl\{d\}) %: ------------ ---------------------------------------------- %: [d,‚)=[Sd,‚) [Sd,‚).<=.[d,‚)\bsl\{d\} %: -------------------------------------------------- %: [d,‚).<=.[d,‚)\bsl\{d\} %: ----------------------- %: ® %: ---------------------------1 %: \notS([d,‚)\bsl\{d\})!=\emp %: %: ^i-23 %: $$\ded{i-20}$$ $$\ded{i-21}$$ $$\ded{i-22}$$ $$\ded{i-23}$$ \newpage % -------------------- % «interval-lemmas» (to ".interval-lemmas") % (s "Interval lemmas" "interval-lemmas") \myslide {Interval lemmas} {interval-lemmas} Definitions: $\begin{array}{lcl} S(A) &:=& \sst{x}{ÎaÝA. Sa=x} \\ A,\_ &:=& \sst{X}{A \subseteq X} \\ \_,B &:=& \sst{X}{S(X \bsl B) \subseteq X} \\ A,B &:=& A,\_ Ì \_,B \\{} [A,B] &:=& \bigcap \, A,B \\{} [a,b] &:=& \bigcap \, \{a\},\{b\} \\{} [ab,cd] &:=& \bigcap \, \{a,b\},\{c,d\} \\ \end{array} $ \msk Elementary lemmas: $\begin{array}{rl} (1) & A \subseteq [A,B] \\ (2) & \notS([A,B]) \subseteq B \\ (3) & [a,B] \subseteq [a,‚) = [a,\emp] \\ (4) & AþA',\_ = A,\_ Ì A',\_ \\ (5) & AÌA',\_ = A,\_ þ A',\_ \\ (6) & \_,BþB' = \_,B þ \_,B' \\ (7) & \_,BÌB' = \_,B Ì \_,B' \\ (8) & [AþA',B] \\& = \bigcap(A,\_ Ì A',\_ Ì \_,B) \\& = [A,B] þ [A',B] \\ (9) & [A,BÌB'] \\& = \bigcap(A,\_ Ì \_,B Ì \_,B') \\& = [A,B] þ [A,B'] \\ \end{array} $ \msk Order lemmas: $\begin{array}{rl} (1) & [AþS(B),BþB'] = [AþS(B),B'] \\ (2) & b \notin [A,C] \funto [A,C] = [A,\{b\}þC] \\ (3) & BÌ[A,C] = \emp \funto [A,C] = [A,BþC] \\ (4) & b,b' Ý \notS([a,B]) \funto b=b' \\ (5) & [a,BþC] = [a,B] \text{ or } [a,BþC] = [a,C] \\ (6) & bÝ[a,c] \funto [a,b] \subseteq [a,c] \\ (7) & bÝ[a,c] \funto [b,c] \subseteq [a,c] \\ (8) & b,SbÝ[a,c]\phantom{, \; b \neq Sb} \funto [a,c] = [a,b]þ[Sb,c] \\ (9) & b,SbÝ[a,c] , \; b \neq Sb \funto [a,c] = [a,b]÷[Sb,c] \\ \end{array} $ \newpage % -------------------- % «interval-induction» (to ".interval-induction") % (s "Induction in intervals" "interval-induction") \myslide {Induction in intervals} {interval-induction} Induction lemmas: $\begin{array}{rl} (1) & A \subseteq X, \; S(X \bsl B) \subseteq X \funto [A,B] \subseteq X \\ (2) & A \subseteq X \subseteq [A,B], \; S(X \bsl B) \subseteq X \funto [A,B] = X \\ \end{array} $ \msk Small lemmas: one whose proof I have not finished yet, $\begin{array}{rl} (1) & bÝ[a,c] \funto [a,b] = [a,bc] \subseteq [a,c] \\ \end{array} $ %: ----------------- %: \_,bc.>=.\_,b %: ------------------------------- %: a,\_Ì\_,bc.>=.a,\_Ì\_,b %: ------------------------------- %: a,bc.>=.a,b %: --------------- %: \bigcapa,bc.<=.\bigcapa,b %: ----------------------------- %: [a,bc].<=.[a,b] %: %: ^indintfoo %: $$\ded{indintfoo}$$ %: c\notin[a,b]∨b=c %: ------------------------------- %: [a,b]\bsl\{b,c\}=[a,b]\bsl\{b\} %: ------- ------------------------------- %: aÝ[a,b] S([a,b]\bsl\{b,c\}).<=.[a,b] %: ----------------------------------------- %: [a,b]Ýa,\_Ì\_,bc %: -------------------- %: [a,b]Ýa,bc %: -------------------- %: [a,b].>=.\bigcapa,bc %: -------------------- %: [a,b].>=.[a,bc] %: %: ^indint2 %: %: %: \_,bc.<=.\_,c %: ------------------------------- %: a,\_Ì\_,bc.<=.a,\_Ì\_,c %: ----------------------------------------------- %: \bigcap(a,\_Ì\_,bc).>=.\bigcap(a,\_Ì\_,c) %: ----------------------------------------------- %: \bigcapa,bc.>=.\bigcapa,c %: --------------------------- %: [a,bc].<=.[a,c] %: %: ^indint3 %: $$\ded{indint2}$$ $$\ded{indint3}$$ \newpage % -------------------- % «interval-induction-2» (to ".interval-induction-2") % (s "Induction in intervals (2)" "interval-induction-2") \myslide {Induction in intervals (2)} {interval-induction-2} ...and another small lemma (whose proof is complete): $\begin{array}{rl} (2) & bÝ[a,c] \funto [b,c] \subseteq [ab,c] = [a,c] \\ \end{array} $ %: %: ----------------- %: b,\_.>=.ab,\_ %: ------------------------------- %: b,\_Ì\_,c.>=.ab,\_Ì\_,c %: ------------------------------------------------- %: \bigcap(b,\_Ì\_,c).<=.\bigcap(ab,\_Ì\_,c) %: ------------------------------------------------- %: [b,c]\subseteq[ab,c] %: %: ^indint0 %: %: bÝ[a,c] %: -------------- %: bÝ\bigcapa,c %: -------------------- %: b,\_\supseteqa,c %: -------------------- %: b,\_Ìa,c=a,c %: -------------------------- %: b,\_Ìa,\_Ì\_,c=a,c %: -------------------------- %: ab,\_Ì\_,c=a,c %: -------------------- %: ab,c=a,c %: ------------ %: [ab,c]=[a,c] %: %: ^indint1 %: $$\ded{indint0} \qquad \ded{indint1}$$ Big lemmas (not proved yet): $\begin{array}{rl} (1) & b,cÝ[a,c], b \neq c \funto [a,Sb] = [a,b] ÷ \{Sb\} \\ (2) & b,cÝ[a,c], b \neq c \funto [b,c] = \{b\} ÷ [Sb,c] \\ (3) & b,cÝ[a,c], b \neq c \funto [a,c] = [a,b] ÷ [Sb,c] \\ \end{array} $ \newpage % -------------------- % «interval-induction-3» (to ".interval-induction-3") % (s "Induction in intervals (3)" "interval-induction-3") \myslide {Induction in intervals (3)} {interval-induction-3} Definitions: $\begin{array}{rcl} {} [a,b;Sb] &:=& ([a,Sb] = [a,b]÷\{Sb\}) \\ {} [b;Sb,c] &:=& ([b,c] = \{b\}÷[Sb,c]) \\ {} [a,b;Sb,c] &:=& ([a,c] = [a,b]÷[Sb,c]) \\ {} [a,b;Sb;SSb,c] &:=& ([a,c] = [a,b]÷\{Sb\}÷[SSb,c]) \\ \end{array} $ \msk Induction rules: %: %: P(a) ýbÝ[a,‚).P(b)⊃P(Sb) %: ------------------------- %: ýbÝ[a,‚).P(b) %: %: ^iind-1 %: %: P(a) ýbÝ[a,c],b\neq"c.P(b)⊃P(Sb) %: --------------------------------- %: ýbÝ[a,c].P(b) %: %: ^iind-2 %: %: P(a) ýbÝ[a,c],b\neq"c,Sb\neq"c.P(b)⊃P(Sb) %: ------------------------------------------ %: ýbÝ[a,c],b\neq"c.P(b) %: %: ^iind-3 %: $$\ded{iind-1}$$ $$\ded{iind-2}$$ $$\ded{iind-3}$$ \msk Lemmas: %: %: cÝ[a,c] a\neq"c b,Sb,cÝ[a,c] b,Sb\neq"c [a,b;Sb] b,cÝ[a,c] b\neq"c %: ================ ================================== ================== %: [a,a;Sa] [a,Sb;SSb] [a,b;Sb] %: %: ^ind-abb0 ^ind-abb+ ^ind-abb %: %: cÝ[a,c] a\neq"c b,Sb,cÝ[a,c] b,Sb\neq"c [b;Sb,c] b,cÝ[a,c] b\neq"c %: ================ ================================== ================== %: [a;Sa,c] [Sb;SSb,c] [b;Sb,c] %: %: ^ind-bbc0 ^ind-bbc+ ^ind-bbc %: %: cÝ[a,c] a\neq"c b,Sb,cÝ[a,c] b,Sb\neq"c [a,b;Sb,c] b,cÝ[a,c] b\neq"c %: ================ ==================================== ================== %: [a,a;Sa,c] [a,Sb;SSb,c] [a,b;Sb,c] %: %: ^ind-abbc0 ^ind-abbc+ ^ind-abbc %: $$\ded{ind-abb0} \qquad \ded{ind-abb+} \qquad \ded{ind-abb}$$ $$\ded{ind-bbc0} \qquad \ded{ind-bbc+} \qquad \ded{ind-bbc}$$ $$\ded{ind-abbc0} \qquad \ded{ind-abbc+} \qquad \ded{ind-abbc}$$ Proofs: %: %: b,Sb,cÝ[a,c] b,Sb\neq"c [a,b;Sb] %: ================================== %: [a,Sb;SSb] %: %: ^ind-abb++ %: %: %: b,Sb,cÝ[a,c] b,Sb\neq"c [b;Sb,c] %: ================================== %: [Sb;SSb,c] %: %: ^ind-bbc++ %: %: %: Sb,cÝ[a,c] Sb\neq"c %: -------------------- %: [a,b;Sb,c] [Sb;SSb,c] b,cÝ[a,c] b\neq"c %: -------------------------- ------------------ %: [a,b;Sb;SSb,c] [a,b;Sb] %: ---------------------------------------- %: [a,Sb;SSb,c] %: %: ^ind-abbc++ %: $$\ded{ind-abb++}$$ $$\ded{ind-bbc++}$$ $$\ded{ind-abbc++}$$ \newpage % -------------------- % «intervals» (to ".intervals") % (s "Intervals" "intervals") \myslide {Intervals} {intervals} {\bf [This is old! Cannibalize and delete it.]} Convention: whenever we write $[a,b]$ it is implicit that $a \epito b$. We will write $A÷B÷C$ to indicate a disjoint union --- i.e., $AþBþC$, but it is implicit that $\{A,B,C\}$ is disjoint. \msk Lemmas: $\begin{array}{rl} (1) & \notS[a,b] \subseteq \{b\} \\ (2) & a \neq b \funto [a,b] = \{a\}÷[Sa,b] \\ (3) & a,b,c \different,\, bÝ[a,c] \funto [a,b]÷[Sb,c] \\ (4) & b,cÝ[a,b] \funto [a,bc]=[a,b]∨[a,bc]=[a,c] \\ (5) & a,b,c,d \different, \, b,cÝ[a,d], \, bÝ[a,bc] \funto \\ & Sb,c \notin [a,bc] \\ (6) & a,b,c,d \different, \, b,cÝ[a,d] \funto \\ & [a,d]=\{a\}÷[Sa,bc]÷[Sb,cd]÷[Sc,bd] \\ (7) & a,b,c,d \different, \, b,cÝ[a,d] \funto \\ & \{\{a\},\,[Sa,bc],\,[Sb,cd],\,[Sc,bd]\} \text{ does not cover } \\ & a \to Sa,\, b \to Sb, \text{ or } c \to Sc \\ (8) & La \funto [Sa,a] = [Sa,‚) = [a,‚) \\ \end{array} $ \msk Now suppose that $a$ is in a loop, that $b,cÝ[Sa,a]$, that $Sa,b,c,a$ are different, and that $Sb=Sc$. This implies that % $$[Sa,a]=\{Sa\}÷[SSa,bc]÷[Sb,ca]÷[Sc,ba],$$ and this should be absurd (check). \msk This implies that each element in a loop has at most one predecessor in the loop. We already knew that each element in a loop has a predecessor in the loop, so this shows that % $$La \funto Î!pÝ[a,‚).Sp=a.$$ % (fooi "\\nepito" "!->>" "\\epito" "->>" "\\funto" "=>" "\\neq" "!=") % (fooi "\\nepito" "!->>" "\\epito" "->>" "\\funto" "=>") %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: