Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008quotypes.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008quotypes.tex && latex 2008quotypes.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008quotypes.tex && pdflatex 2008quotypes.tex")) % (eev "cd ~/LATEX/ && Scp 2008quotypes.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2008quotypes.dvi") % (find-pspage "~/LATEX/2008quotypes.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -P pk -D 300 -o 2008quotypes.ps 2008quotypes.dvi") % (find-pspage "~/LATEX/2008quotypes.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -P pk -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2008quotypes.pdf" (ee-twupfile "LATEX/2008quotypes.pdf") 'over) % (ee-cp "~/LATEX/2008quotypes.pdf" (ee-twusfile "LATEX/2008quotypes.pdf") 'over) % «.lemma-4.8.2» (to "lemma-4.8.2") % «.quotient-types» (to "quotient-types") % «.eq-on-morphisms» (to "eq-on-morphisms") % «.eq-on-morphisms-2» (to "eq-on-morphisms-2") % «.adjunctions» (to "adjunctions") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2008quotypes.dnt %* % (eedn4-51-bounded) Index of the slides: \msk % To update the list of slides uncomment this line: \makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {Lemma 4.8.2} {2} \tocline {Quotient types} {3} \tocline {How the `Eq' functor acts on morphisms} {4} \tocline {How the `Eq' functor acts on morphisms (2)} {5} \def\byR{_{\!/\!R}} \def\ovl{\overline} \def\Eq{¯{Eq}} \def\Ker{¯{Ker}} %:*§_*§\!_* \newpage % -------------------- % «lemma-4.8.2» (to ".lemma-4.8.2") % (s "Lemma 4.8.2" "lemma-4.8.2") \myslide {Lemma 4.8.2} {lemma-4.8.2} (Jacobs, p.292) % (find-jacobspage (+ 19 292) "4.8.2. Lemma") %D diagram ?? %D 2Dx 100 +40 +60 %D 2D 100 A0 |------------\ %D 2D v v %D 2D +20 A1 |-> A2 A3 %D 2D v v ^ %D 2D +20 A4 |-> A5 |-----/ %D 2D %D 2D +15 B0 |------------> B1 %D 2D |-> |-----> %D 2D +20 B2 %D 2D %D (( A0 .tex= Raa' %D A1 .tex= \oa{=}\oa' A2 .tex= \oa{=}\oa' A3 .tex= b{=}b' %D A4 .tex= b{=}b' A5 .tex= b{=}b' %D B0 .tex= a;a' B1 .tex= b;b' %D B2 .tex= \oa;\oa' %D A0 A1 |-> A0 A3 |-> %D A1 A2 |-> .plabel= a {ñ} %D A1 A4 |-> A2 A5 |-> %D A4 A5 |-> .plabel= a {ñ} A5 A3 |-> .plabel= a {ñ} %D )) %D (( A0 B2 => A3 B1 <= %D )) %D (( B0 B1 |-> %D B0 B2 |-> B2 B1 |-> %D )) %D enddiagram %D $$\def\oa{\ovl{a}} \diag{??} $$ %D diagram ??? %D 2Dx 100 +40 +60 %D 2D 100 A0 |------------\ %D 2D v v %D 2D +20 A1 |-> A2 A3 %D 2D v v ^ %D 2D +20 A4 |-> A5 |-----/ %D 2D %D 2D +15 B0 |------------> B1 %D 2D |-> |-----> %D 2D +20 B2 %D 2D %D (( A0 .tex= R %D A1 .tex= \Ker(c_R) A2 .tex= \Eq(I/R) A3 .tex= \Eq(J) %D A4 .tex= \Ker(u) A5 .tex= \Ker(v) %D B0 .tex= I B1 .tex= J %D B2 .tex= I/R %D A0 A1 -> A0 A3 -> %D A1 A2 -> .plabel= a {ñ} %D A1 A4 -> A2 A5 -> %D A4 A5 -> .plabel= a {ñ} A5 A3 -> .plabel= a {ñ} %D )) %D (( A0 B2 |-> A3 B1 <-| %D )) %D (( B0 B1 -> .plabel= a u %D B0 B2 -> .plabel= b c_R B2 B1 -> .plabel= b v %D )) %D enddiagram %D $$\def\oa{\ovl{a}} \diag{???} $$ % \end{document} \newpage % -------------------- % «quotient-types» (to ".quotient-types") % (s "Quotient types" "quotient-types") \myslide {Quotient types} {quotient-types} (Jacobs, p.282/290) % (find-jacobspage (+ 19 282) "4.7_ Quotient types") % (find-jacobspage (+ 19 290) "4.7_ Quotient types, categorically") %D diagram quo1 %D 2Dx 100 +35 +35 %D 2D 100 Raa' b{=}b' %D 2D %D 2D +20 R^*aa' %D 2D %D 2D +25 a;a' a\byR;{a'}\byR b;b' %D 2D %D (( Raa' b{=}b' # 0 1 %D R^*aa' # 2 %D a;a' a\byR;{a'}\byR b;b' # 3 4 5 %D @ 0 @ 1 |-> %D @ 0 @ 2 |-> @ 0 @ 4 => @ 1 @ 5 <= %D @ 2 @ 3 => %D @ 2 @ 4 => %D @ 3 @ 4 |-> @ 4 @ 5 |-> %D @ 1 @ 4 varrownodes nil 22 nil <-> %D )) %D enddiagram %D $$\diag{quo1}$$ %D diagram quo2 %D 2Dx 100 +40 +55 %D 2D 100 \ovl{R}aa' a\byR{=}{a'}\byR %D 2D %D 2D +20 Raa' b{=}b' %D 2D %D 2D +30 a\byR;{a'}\byR %D 2D %D 2D +20 a;a' b;b' %D 2D %D (( \ovl{R}aa' a\byR{=}{a'}\byR # 0 1 %D Raa' b{=}b' # 2 3 %D a\byR;{a'}\byR # 4 %D a;a' b;b' # 5 6 %D @ 0 @ 1 <= sl_ @ 0 @ 1 |-> sl^ .plabel= a ñ %D @ 0 @ 2 <-| @ 1 @ 4 <= @ 1 @ 3 |-> %D @ 2 @ 5 => @ 2 @ 4 => @ 2 @ 3 |-> @ 3 @ 6 <= %D @ 5 @ 4 |-> @ 4 @ 6 |-> @ 5 @ 6 |-> %D )) %D enddiagram %D $$\diag{quo2}$$ \bsk %: %: a,a'|-Ï[Raa'] a|-b a|-b a|-b' %: -------------Q --------QI ----------------------QI= %: |-A/R a|-b\byR a,Rbb'|-b\byR={b'}\byR %: %: ^Q ^QI ^QI= %: %: %: a,b|-c_b a,b,b',Rbb'|-c_b=c_{b'} a|-b a|-b' %: ---------------------------------QE ------------------------Qeff %: a,b\byR|-c_{b\byR} a,b\byR{=}{b'}\byR|-Rbb' %: %: ^QE ^Qeff %: $$\ded{Q} \qquad \ded{QI} \qquad \ded{QI=}$$ $$\ded{QE} \qquad \ded{Qeff}$$ \newpage % -------------------- % «eq-on-morphisms» (to ".eq-on-morphisms") % (s "How the `Eq' functor acts on morphisms" "eq-on-morphisms") \myslide {How the `Eq' functor acts on morphisms} {eq-on-morphisms} % (find-jacobspage (+ 19 291) "\"equality relation\" functor") (Jacobs, p.291) % (find-LATEX "2008hyp.tex" "dep-eq-from-simple-eq") %D diagram QEq1-dnc %D 2Dx 100 +45 +55 +45 %D 2Dx 100 +55 +60 +55 %D 2D 100 B0 <==> B0' <============= B1 %D 2D -\\ - -\\ %D 2D | \\ | <--| | \\ %D 2D v \\ v v \\ %D 2D +20 B2 <\\> B2' <============= B3 \\ %D 2D /\ \/ /\ \/ %D 2D +15 \\ B4 \\ B5 %D 2D \\ - \\ - %D 2D \\ | \\| %D 2D \\v \v %D 2D +20 B6 <===================== B7 %D 2D %D 2D +10 b0 |---------------------> b1 %D 2D |-> |-> %D 2D +35 b2 |--------------------> b3 %D 2D %D (( %D B0 .tex= § B0' .tex= § x+= -3 B1 .tex= a{=}a %D B2 .tex= b{=}b B2' .tex= b{=}b x+= -3 B3 .tex= b{=}b %D B4 .tex= a{=}a' B5 .tex= b{=}b' %D B6 .tex= b{=}b' B7 .tex= b{=}b' %D # B0 B0' <-| sl^ .plabel= a î %D B0 B0' |-> .plabel= a ÐP§ %D B0 B2 |-> B0' B2' |-> B2 B2' <-| %D B1 B3 |-> B0' B1 <= B2' B3 <= %D B0 B4 => B1 B5 => %D B2 B6 <= B3 B7 <= %D B6 B7 <= B6 B7 |-> sl^^ .plabel= a {ñ} %D B5 B7 |-> .plabel= r \id %D B4 B6 |-> %D # B4 B6 <-| sl^ .plabel= r Ð{BCC}Î %D B0 B2 midpoint B0' B2' midpoint harrownodes 7 17 nil <-| %D B0' B2' midpoint B1 B3 midpoint harrownodes nil 20 nil <-| %D B0 B2 midpoint B4 B6 midpoint dharrownodes nil 20 nil |-> %D B1 B3 midpoint B5 B7 midpoint dharrownodes nil 20 nil <-| %D )) %D (( b0 .tex= a b1 .tex= b b2 .tex= a,a' b3 .tex= b,b' %D b0 b1 |-> b0 b2 |-> b1 b3 |-> b2 b3 |-> %D # b0 relplace 20 7 \pbsymbol{7} %D )) %D enddiagram % $$\diag{QEq1-dnc}$$ %D diagram QEq1-std %D 2Dx 100 +55 +60 +55 %D 2D 100 B0 <==> B0' <============= B1 %D 2D -\\ - -\\ %D 2D | \\ | <--| | \\ %D 2D v \\ v v \\ %D 2D +20 B2 <\\> B2' <============= B3 \\ %D 2D /\ \/ /\ \/ %D 2D +15 \\ B4 \\ B5 %D 2D \\ - \\ - %D 2D \\ | \\| %D 2D \\v \v %D 2D +20 B6 <===================== B7 %D 2D %D 2D +10 b0 |---------------------> b1 %D 2D |-> |-> %D 2D +35 b2 |--------------------> b3 %D 2D %D (( %D B0 .tex= §_I B0' .tex= u^*§_J x+= 3 B1 .tex= §_J %D B2 .tex= _I^*(u{×}u)^*\Eq_J§_J B2' .tex= u^*_J^*\Eq_J§_J x+= 3 B3 .tex= _J^*\Eq_J§_J %D B4 .tex= \Eq_I§_I B5 .tex= \Eq_J§_J %D B6 .tex= (u{×}u)^*\Eq_J§_J B7 .tex= \Eq_J§_J %D # B0 B0' <- sl^ .plabel= a î %D B0 B0' -> .plabel= a ÐP§ %D B0 B2 -> B0' B2' -> B2 B2' <- %D B1 B3 -> B0' B1 <-| B2' B3 <-| %D B0 B4 |-> B1 B5 |-> %D B2 B6 <-| B3 B7 <-| %D B6 B7 <-| B6 B7 -> sl^^ .PLABEL= ^(0.5) {ñ} %D B5 B7 -> .plabel= r \id %D B4 B6 -> %D # B4 B6 <- sl^ .plabel= r Ð{BCC}Î %D B0 B2 midpoint B0' B2' midpoint harrownodes 7 17 nil <-| %D B0' B2' midpoint B1 B3 midpoint harrownodes nil 20 nil <-| %D B0 B2 midpoint B4 B6 midpoint dharrownodes 5 20 nil |-> %D B1 B3 midpoint B5 B7 midpoint dharrownodes nil 20 nil <-| %D )) %D (( b0 .tex= I b1 .tex= J b2 .tex= I×I b3 .tex= J×J %D b0 b1 -> .plabel= b u %D b0 b2 -> .plabel= l _I %D b1 b3 -> .plabel= b _J %D b2 b3 -> .plabel= r u×u %D # b0 relplace 20 7 \pbsymbol{7} %D )) %D enddiagram % $$\diag{QEq1-std}$$ \newpage % -------------------- % «eq-on-morphisms-2» (to ".eq-on-morphisms-2") % (s "How the `Eq' functor acts on morphisms (2)" "eq-on-morphisms-2") \myslide {How the `Eq' functor acts on morphisms (2)} {eq-on-morphisms-2} % (find-jacobspage (+ 19 291) "\"equality relation\" functor") (Jacobs, p.291) %: u;(J)=(I);u×u \Eq_J(§(J)) %: ---------------------------------------------- %: u^*(J)^*\Eq_J(§(J))->(I)^*(u×u)^*\Eq_J(§(J)) %: %: ^Eq1a %: %: \Eq_J(§(J))->\Eq_J(§(J)) %: ------------------------ %: u §(J)->(J)^*\Eq_J(§(J)) %: ------------------------------- %: §(I) u §(J) u^*(§(J))->u^*(J)^*\Eq_J(§(J)) u;(J)=(I);u×u %: ---------------ÐP§ ---------------------------------------------------- %: §(I)->u^*(§(J)) u^*(§(J))->(I)^*(u×u)^*\Eq_J(§(J)) %: ------------------------------------------------------------------- %: §(I)->(I)^*(u×u)^*\Eq_J(§(J)) %: ------------------------------ %: \Eq_I(§(I))->(u×u)^*\Eq_J(§(J)) %: %: ^Eq1b %: %: u×u \Eq_J(§(J)) %: ------------------------------{ñ} %: \Eq_I(§(I))->(u×u)^*\Eq_J(§(J)) (u×u)^*\Eq_J(§(J))->\Eq_J(§(J)) %: ------------------------------------------------------------------ %: \Eq_I(§(I))->\Eq_J(§(J)) %: %: ^Eq1c %: $$\ded{Eq1a}$$ $$\ded{Eq1b}$$ $$\ded{Eq1c}$$ \msk %: (a|->b|->b,b')=(a|->a,a'|->b,b') \ssst{b,b'}{b{=}b'} %: ------------------------------------------------------ %: a||b{=}b|-b{=}b %: %: ^Eq1a-dnc %: %: b,b'||b{=}b'|-b{=}b' %: ------------------- %: a|->b b||§|-b{=}b %: ---------------------- %: \ssst{a}{§} a|->b \ssst{b}{§} a||§|-b{=}b (a|->b|->b,b')=(a|->a,a'|->b,b) %: ------------------------------- ---------------------------------------------- %: a||§|-§ a||§|-b{=}b %: --------------------------------------------------------- %: a||§|-b{=}b %: ------------------- %: a,a'||a{=}a'|-b{=}b' %: %: ^Eq1b-dnc %: %: a,a'|->b,b' \ssst{b,b'}{b{=}b'} %: --------------------------------------- %: a,a'||a{=}a'|-b{=}b' (a,a'\,||\,b{=}b')|->(b,b'\,||\,b{=}b') %: -------------------------------------------------------------- %: (a,a'\,||\,a{=}a')|->(b,b'\,||\,b{=}b') %: %: ^Eq1c-dnc %: $$\ded{Eq1a-dnc}$$ $$\ded{Eq1b-dnc}$$ $$\ded{Eq1c-dnc}$$ \newpage % -------------------- % «adjunctions» (to ".adjunctions") % (s "Adjunctions" "adjunctions") \myslide {Adjunctions} {adjunctions} % (find-LATEX "2008comprcat.tex" "ccw1") % (find-jacobspage (+ 19 294) "4.8.3. Theorem") (Jacobs, p.294) %D diagram ?? %D 2Dx 100 +20 +20 +20 +20 %D 2D 100 § ======> a=a' %D 2D v v %D 2D +20 {}Rbb <==== Rbb'{} %D 2D <== <== %D 2D +20 a |-----> a,a' %D 2D +10 Rbb <====== Rbb' %D 2D <-| |-> |-> %D 2D +20 b|_{Rbb} `---> b |------> b,b' %D 2D %D 2D %D (( § a=a' # 0 1 %D {}Rbb Rbb'{} # 2 3 %D Rbb Rbb' # 4 5 %D @ 0 @ 1 => %D @ 0 @ 2 |-> @ 1 @ 3 |-> %D @ 2 @ 3 <= %D @ 2 @ 4 <= @ 3 @ 5 <= %D @ 4 @ 5 <= %D )) %D (( a a,a' # 0 1 %D b|_{Rbb} b b,b' # 2 3 4 %D @ 0 @ 1 |-> @ 0 @ 2 <-| @ 0 @ 3 |-> @ 1 @ 4 |-> %D @ 2 @ 3 `-> @ 3 @ 4 |-> %D )) %D (( Rbb b|_{Rbb} => %D Rbb b => %D )) %D enddiagram %D $$\diag{??}$$ %D diagram 4.8.3 %D 2Dx 100 +40 +40 +40 +40 %D 2D 100 Raa' |-----------------> b=b' |----------------> Scc' %D 2D || \\ /\ // || %D 2D || \\ || // || %D 2D \/ \/ || \/ \/ %D 2D +20 a;a' |-->> a/R;a'/R |--> b;b' |--> c|S;c'|S `--> c;c' %D 2D %D (( Raa' b=b' Scc' # 0 1 2 %D a;a' a/R;a'/R b;b' c|S;c'|S c;c' # 3 4 5 6 7 %D c|S;c'|S .tex= c|_{Scc},c'|_{Sc'c'} %D @ 0 @ 1 |-> @ 1 @ 2 |-> %D @ 0 @ 3 => @ 0 @ 4 => @ 1 @ 5 <= @ 2 @ 6 => @ 2 @ 7 => %D @ 3 @ 4 |->> @ 4 @ 5 |-> @ 5 @ 6 |-> @ 6 @ 7 `-> %D )) %D enddiagram %D $$\diag{4.8.3}$$ %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: