Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008sdg.tex") % (find-dn4ex "edrx08.sty") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008sdg.tex && latex 2008sdg.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008sdg.tex && pdflatex 2008sdg.tex")) % (find-dvipage "~/LATEX/2008sdg.dvi") % (find-pspage "~/LATEX/2008sdg.pdf") % (find-twupfile "LATEX/") % (find-twusfile "LATEX/") % http://angg.twu.net/LATEX/ % http://angg.twu.net/LATEX/2008sdg.pdf % (ee-cp "~/LATEX/2008sdg.pdf" (ee-twupfile "/LATEX/2008sdg.pdf") 'over) % (ee-cp "~/LATEX/2008sdg.pdf" (ee-twusfile "/LATEX/2008sdg.pdf") 'over) % «.ring-objects» (to "ring-objects") % «.ring-object-tan-space» (to "ring-object-tan-space") % «.ring-object-functions» (to "ring-object-functions") % «.ring-object-morphism» (to "ring-object-morphism") % «.ring-object-of-lt» (to "ring-object-of-lt") % «.beta-is-known» (to "beta-is-known") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2008sdg.dnt %* % (eedn4-51-bounded) Index of the slides: \msk % To update the list of slides uncomment this line: \makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {Ring objects} {2} \tocline {A ring object: the tangent space} {3} \tocline {Another ring object: a ring of functions} {4} \tocline {A homomorphism between ring objects} {5} \tocline {Ring objects of line type} {6} \tocline {Lemma: the map $\beta $ is known} {7} \newpage % -------------------- % «ring-objects» (to ".ring-objects") % (s "Ring objects" "ring-objects") \myslide {Ring objects} {ring-objects} $(\R,0,1,+,·,-)$ can be seen as a ``ring object'' in $\Set$, that is, as five functions from powers of $\R$ to $\R$, one for each operation: %D diagram R-as-ring-object %D 2Dx 100 +30 +30 %D 2D 100 1 =====> \R <===== \R^2 %D 2D %D 2D +20 * |----> 0 %D 2D +5 {}* |----> 1{} %D 2D +5 a+b <-----| a,b %D 2D +5 ab <-----| a,b{} %D 2D %D (( 1 \R -> sl^ .plabel= a 0 %D 1 \R -> sl_ .plabel= b 1 %D \R \R^2 <-| sl^ .plabel= a + %D \R \R^2 <-| sl_ .plabel= b · %D )) %D (( * 0 |-> %D {}* 1{} |-> %D a+b a,b <-| %D ab a,b{} <-| %D )) %D enddiagram %D $$\diag{R-as-ring-object}$$ (we will never draw the additive inverse $-:\R \to \R$). \ssk These arrows must obey some equations --- for example, $(a+b)c = ac+bc$, that becomes: %: %: a,b,c a,b,c a,b,c a,b,c a,b,c a,b,c %: ----- ----- ----- ----- ----- ----- %: a b a,b,c a c b c %: -------- ----- -------- -------- %: a+b c ac bc %: ------------ ---------------- %: (a+b)c = ac+bc %: %: ^distr-eq-1 ^distr-eq-2 %: $$\ded{distr-eq-1} \quad = \quad \ded{distr-eq-2}$$ %: %: \id \id \id \id \id \id %: ----- --- --- --- --- --- %: _1 _2 \id _1 _3 _2 _3 %: --------------- --- -------- -------- %: \ang{_1,_2};+ _3 \ang{_1,_3};· \ang{_2,_3};· %: ---------------------------- --------------------------------- %: \ang{(\ang{_1,_2};+),_3};· \ang{(\ang{_1,_3};·),(\ang{_2,_3};·)};+ %: %: ^distr-eq-1b ^distr-eq-2b %: $$\ded{distr-eq-1b} \quad = \quad \ded{distr-eq-2b}$$ %D diagram R-associativity %D 2Dx 100 +75 %D 2D 100 \R^3 =====> \R %D 2D %D 2D +15 a,b,c |----> (a+b)c %D 2D +5 {}a,b,c |----> ac+bc %D 2D %D (( \R^3 \R -> sl^ .plabel= a \ang{(\ang{_1,_2};+),_3};· %D \R^3 \R -> sl_ .plabel= b \ang{(\ang{_1,_3};·),(\ang{_2,_3};·)};+ %D )) %D (( a,b,c (a+b)c |-> %D {}a,b,c ac+bc |-> %D )) %D enddiagram %D $$\diag{R-associativity}$$ As $\Set$ has finite products every $(\R,0,1,+,·,-)$-polynomial in $n$ variables can be represented as a morphism $\R^n \to \R$; each of the ring axioms becomes the statement that two ``$(\R,0,1,+,·,-)$-polynomials'' are equal. \bsk Note: the part $(\R,0,1,+,·,-)$ of the definition of a ring object is sometimes called the ``structure'' of the ring object; the uple with one equality between $(\R,0,1,+,·,-)$-polynomials for each of the ring axioms is called ``properties''. We will not spell out in detail the ``properties'' part here, and we will write just ``$(\R,0,1,+,·,-)$'' --- or ``$\R$'' --- for everything. \newpage % -------------------- % «ring-object-tan-space» (to ".ring-object-tan-space") % (s "A ring object: the tangent space" "ring-objects-tan-space") \myslide {A ring object: the tangent space} {ring-objects-tan-space} The tangent space of $\R$, $T\R$, has the same points as $\R^2$, and a ring structure, with special definitions for `1' and `$·$'. We will denote its points as $(a,a_x), (b,b_x), \ldots$ Here is its ring structure: %D diagram TR-as-ring-object %D 2Dx 100 +35 +60 %D 2D 100 1 =====> T\R <============== (T\R)^2 %D 2D %D 2D +20 * |----> (0,0) %D 2D +6 {}* |----> (1,0) %D 2D +6 (a+b,a_x+b_x) <-----| (a,a_x),(b,b_x) %D 2D +6 (ab,a_xb+b_xa) <----| (a,a_x),(b,b_x){} %D 2D %D (( 1 T\R -> sl^ .plabel= a 0 %D 1 T\R -> sl_ .plabel= b 1 %D T\R (T\R)^2 <- sl^ .plabel= a + %D T\R (T\R)^2 <- sl_ .plabel= b · %D )) %D (( * (0,0) |-> %D {}* (1,0) |-> %D (a+b,a_x+b_x) (a,a_x),(b,b_x) <-| %D (ab,a_xb+b_xa) (a,a_x),(b,b_x){} <-| %D )) %D enddiagram %D $$\diag{TR-as-ring-object}$$ \newpage % -------------------- % «ring-object-functions» (to ".ring-object-functions") % (s "Another ring object: a ring of functions" "ring-objects-functions") \myslide {Another ring object: a ring of functions} {ring-objects-functions} \def\AffLin{\mathrm{AffLin}} \widemtos For any set $S$ the space of functions $S \to \R$ (a.k.a. ``$\R^S$'') has a natural ring structure: %D diagram SR-as-ring-object %D 2Dx 100 +35 +70 %D 2D 100 1 ========> (S->\R) <============ (S->\R)^2 %D 2D %D 2D +20 * |-------> (s|->0) %D 2D +6 {}* |-------> (s|->1) %D 2D +6 (s|->a[s]+b[s]) <-----| (s|->a[s],(s|->b[s]) %D 2D +7 (s|->a[s]b[s]) <------| (s|->a[s],(s|->b[s]){} %D 2D %D (( 1 (S->\R) -> sl^ .plabel= a 0 %D 1 (S->\R) -> sl_ .plabel= b 1 %D (S->\R) (S->\R)^2 <- sl^ .plabel= a + %D (S->\R) (S->\R)^2 <- sl_ .plabel= b · %D )) %D (( * (s|->0) |-> %D {}* (s|->1) |-> %D (s|->a[s]+b[s]) (s|->a[s],(s|->b[s]) <-| %D (s|->a[s]b[s]) (s|->a[s],(s|->b[s]){} <-| %D )) %D enddiagram %D $$\diag{SR-as-ring-object}$$ % (s \mto a[s]): If $S \subseteq \R$ then some functions $S \to \R$ are ``affine linear'', in the sense that they can be characterized by two reals --- a ``constant part'' (`$a$') and a ``slope'' (`$a_x$'). \msk Let's write these functions as $s \mto a + a_x s$. \msk Then the set of affine linear functions in $S \to \R$ is \und{almost} closed by the ring operations --- the only problem is the second-order term in the result of the multiplication (underlined below): %D diagram SRL-as-ring-object %D 2Dx 100 +50 +12 +80 %D 2D 100 * |---> (s|->0) %D 2D +6 {}* |---> (s|->1) %D 2D +6 a+b <-------------------| a,b %D 2D +7 ab <-------------| a,b{} %D 2D %D (( a+b .tex= (s|->a+b+(a_x+b_x)s) %D ab .tex= (s|->ab+(a_xb+ab_x)s+\und{a_xb_xs^2}) %D a,b .tex= (\ldots),(\ldots) %D a,b{} .tex= (\ldots),(\ldots) %D * (s|->0) |-> %D {}* (s|->1) |-> %D a+b a,b <-| %D ab a,b{} <-| %D )) %D enddiagram %D $$\diag{SRL-as-ring-object}$$ However, if $S \subseteq \sst{x \in \R}{x^2 = 0}$ then the second-order term disappears, and the set of affine linear functions $$\AffLin(S \to R) := \sst{f:S \to \R}{f \text{ is affine linear}} \subseteq (S \to \R) $$ is a subring of $S \to \R$, and, furthermore, there is a ring homeomorphism $\phi: T\R \to (S \to \R)$... \newpage % -------------------- % «ring-object-morphism» (to ".ring-object-morphism") % (s "A homomorphism between ring objects" "ring-object-morphism") \myslide {A homomorphism between ring objects} {ring-object-morphism} ``$\phi: T\R \to (S \to \R)$ is a ring homomorphism'' means that for each of the five operations, $0, 1, +, ·, -$, a certain square commutes... %D diagram romorphism %D 2Dx 100 +45 +65 %D 2D 100 1 =======> T\R <============ T\R×T\R %D 2D | | | %D 2D | | | %D 2D | v v %D 2D +30 {}1 ====> (S->\R) <====== (S->\R)×(S->\R) %D 2D %D (( 1 T\R T\R×T\R %D {}1 (S->\R) (S->\R)×(S->\R) %D @ 0 @ 1 -> sl^ .plabel= a 0 %D @ 0 @ 1 -> sl_ .plabel= b 1 %D @ 1 @ 2 <- sl^ .plabel= a + %D @ 1 @ 2 <- sl_ .plabel= b · %D @ 3 @ 4 -> sl^ .plabel= a 0 %D @ 3 @ 4 -> sl_ .plabel= b 1 %D @ 4 @ 5 <- sl^ .plabel= a + %D @ 4 @ 5 <- sl_ .plabel= b · %D @ 0 @ 3 -> .plabel= l \id %D @ 1 @ 4 -> .plabel= r \phi %D @ 2 @ 5 -> .plabel= r \phi×\phi %D )) %D enddiagram %D $$\diag{romorphism}$$ (We do not draw the `$-$' arrows). The less trivial case is the square for `$·$': %D diagram rmomult %D 2Dx 100 +120 %D 2Dx +13 %D 2D 100 ab1 <-----| a,b1 %D 2D - - %D 2D | | %D 2D v | %D 2D +30 ab2 | %D 2D v %D 2D +10 ab3 <-| a,b3 %D 2D %D (( ab1 .tex= (ab,a_xb+ab_x) %D a,b1 .tex= (a,a_x),(b,b_x) %D ab2 .tex= (s|->ab+(a_xb+ab_x)s) %D ab3 .tex= (s|->ab+(a_xb+ab_x)s+\und{a_xb_xs^2}) %D a,b3 .tex= (s|->a+a_xs),(s|->b+b_xs) %D @ 0 @ 1 <-| %D @ 0 @ 2 |-> @ 1 @ 4 |-> # @ 2 @ 3 = %D @ 3 @ 4 <-| %D )) %D enddiagram %D $$\diag{rmomult}$$ As we are supposing that $S \subseteq \sst{x \in \R}{x^2 = 0}$, the term $a_x b_x s^2$ is zero, and that square commutes. \bsk In $\R$ the set of square-zero elements, $\sst{x \in \R}{x^2=0}$, is too small for this to be interesting --- {\sl but the same constructions work for any ring $R$.} \msk Example: $R := \R[X, Y]/\ang{X^2,Y^2}$ --- the ring of polynomials on two variables, `$X$' and `$Y$', with coefficients on $\R$, divided by an ideal to force $X^2=0$ and $Y^2=0$. \msk {\bf Notational convention:} $\ee^2=0$ and $\dd^2=0$. Then, using `$\ee$' and `$\dd$' as variables, we can write just ``$\R[\ee, \dd]$'' instead of ``$\R[\ee, \dd]/\ang{\ee^2,\dd^2}$''. \msk Note that $(\ee+\dd)^2 = \ee^2 + 2\ee\dd + \dd^2 = 2\ee\dd \neq 0$ --- so $\ee + \dd$ is not a square-zero element in $\R[\ee, \dd]$. \newpage % -------------------- % «ring-object-of-lt» (to ".ring-object-of-lt") % (s "Ring objects of line type" "ring-object-of-lt") \myslide {Ring objects of line type} {ring-object-of-lt} \ssk Fact (a.k.a. ``Main Theorem'', proved in the next slides): When the arrow $\aa$ below is invertible we can use the composite $\cc := (\aa^{-1};_2)$ to define, for any $f: R \to R$, its derivative $f': R \to R$, and these derivatives behave as expected: \ssk $\begin{array}{rcl} (kf)' & = & kf' \\ (f+g)' & = & f'+g', \\ (fg)' & = & f'g + fg', \\ (f¢g)' & = & (f'¢g)\,g'. \\ \end{array} $ %L forths["sl_/2"] = macro(".slide= -1.25pt") %L forths["sl^/2"] = macro(".slide= 1.25pt") %L forths["<.|"] = function () pusharrow("<.|") end %L forths["|.>"] = function () pusharrow("|.>") end \msk \widemtos %D diagram aabbcc %D 2Dx 100 +35 +35 +20 +35 +35 %D 2D 100 --| R^D |-- dx|->a+a_xdx %D 2D / ^ \ \ ^ /. %D 2D \bb / | \ \bb / | `. %D 2D v - v v - v %D 2D +30 {}R <----- R×R -----> R{} a <------| a,a_x |----> a_x %D 2D _1 _2 %D (( R^D {}R R×R R{} %D @ 0 @ 1 -> .plabel= l \bb %D @ 0 @ 2 <- sl_ .plabel= l \aa %D @ 0 @ 2 .> sl^/2 .plabel= r \aa^{-1} %D @ 0 @ 3 .> .plabel= r \cc %D @ 1 @ 2 <- .plabel= b _1 %D @ 2 @ 3 -> .plabel= b _2 %D )) %D (( dx|->a+a_xdx .tex= (dx|->a+a_xdx) %D a a,a_x a_x %D @ 0 @ 1 |-> .plabel= l \bb %D @ 0 @ 2 <-| sl_ .plabel= l \aa %D @ 0 @ 2 |.> sl^ .plabel= r \aa^{-1} %D @ 0 @ 3 |.> .plabel= r \cc %D @ 1 @ 2 <-| .plabel= b _1 %D @ 2 @ 3 |-> .plabel= b _2 %D )) %D enddiagram %D $\diag{aabbcc}$ \bsk The hypotheses are just these: $\catC$ is a category with finite limits, $(R, 0, 1, +, ·, -)$ is a ring object in $\catC$, and $D := \sst{dx Ý R}{dx^2=0}$ (that is definable as an equalizer) is exponentiable. \msk ({\sl Stronger hypotheses, simpler to understand:} $\catC$ is cartesian closed and has pullbacks, $(R, 0, 1, +, ·, -)$ is a ring object in $\catC$.) \msk Then if the (definable) map $\aa: R×R \to R^D$ is invertible, we have a notion of ``derivative'' for functions $R \to R$, that behaves as expected. \bsk A ring $(R, 0, 1, +, ·, -)$ for which $\aa: R×R \to R^D$ is invertible is said to be ``of line type''. \newpage % -------------------- % «beta-is-known» (to ".beta-is-known") % (s "Lemma: the map $beta$ is known" "beta-is-known") \myslide {Lemma: the map $\beta$ is known} {beta-is-known} Lemma: even when $\aa^{-1}$ does not exist $\bb$ is known... More precisely: {\sl define} $\bb$ as ``evaluate $dx \mto a + a_x dx$ at $dx:=0$''; then $(\aa;\bb)=_1$. If $\aa^{-1}$ exists then $(\aa;\bb)=_1$ iff $\bb = (\aa^{-1};_1)$. %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: