Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2009-2-C4-prova-1.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009-2-C4-prova-1.tex && latex 2009-2-C4-prova-1.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009-2-C4-prova-1.tex && pdflatex 2009-2-C4-prova-1.tex")) % (eev "cd ~/LATEX/ && Scp 2009-2-C4-prova-1.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (defun d () (interactive) (find-dvipage "~/LATEX/2009-2-C4-prova-1.dvi")) % (find-dvipage "~/LATEX/2009-2-C4-prova-1.dvi") % (find-pspage "~/LATEX/2009-2-C4-prova-1.pdf") % (find-pspage "~/LATEX/2009-2-C4-prova-1.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2009-2-C4-prova-1.ps 2009-2-C4-prova-1.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2009-2-C4-prova-1.ps 2009-2-C4-prova-1.dvi && ps2pdf 2009-2-C4-prova-1.ps 2009-2-C4-prova-1.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2009-2-C4-prova-1.pdf" (ee-twupfile "LATEX/2009-2-C4-prova-1.pdf") 'over) % (ee-cp "~/LATEX/2009-2-C4-prova-1.pdf" (ee-twusfile "LATEX/2009-2-C4-prova-1.pdf") 'over) \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2009-2-C4-prova-1.dnt % (find-angg "LATEX/2009-2-C4-prova-1-notas.tex") %* % (eedn4-51-bounded) % (find-fline "~/PURO/diarios_de_classe/") %Index of the slides: %\msk % To update the list of slides uncomment this line: %\makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \def\sen{\operatorname{sen}} \def\pmat#1{\begin{pmatrix} #1 \end{pmatrix}} \def\bmat#1{\left|\begin{matrix} #1 \end{matrix}\right|} \def\sm#1{\begin{smallmatrix} #1 \end{smallmatrix}} \def\bsm#1{\left|\begin{smallmatrix} #1 \end{smallmatrix}\right|} \def\psm#1{\left(\begin{smallmatrix} #1 \end{smallmatrix}\right)} \def\subst#1{\left[\begin{smallmatrix} #1 \end{smallmatrix}\right]} Cálculo 4 - Primeira Prova (P1) PURO-UFF - 2009.2 28/outubro/2009 Prof: Eduardo Ochs \bsk \bsk \noindent {\bf (1)} (Total: 4.0 pontos). Seja $B_{xy} = \sst{(x,y)}{xÝ[1,2], yÝ[x^2,2x^2]}$. Considere a mudança de variáveis: % $$\pmat{u \\ v} := \pmat{x \\ y/x^2}$$ % Ela leva a região $B_{xy}$, contida no plano $(x,y)$, numa região $B_{uv}$ do plano $(u,v)$. \ssk a) (1.0 pts) Represente graficamente as regiões $B_{xy}$ e $B_{uv}$. \ssk b) (2.0 pts) Complete: % $$\int_{x=1}^{x=2} \int_{y=x^2}^{y=2x^2} f(x,y)\,dy\,dx = \int_{u=\ldots}^{u=\ldots} \int_{v=\ldots}^{v=\ldots} \ldots\,dv\,du $$ \ssk c) (1.0 pts) Inverta a ordem de integração nas duas integrais do item (b). \bsk % \bsk \noindent {\bf (2)} (Total: 1.0 ponto). Calcule o volume de: % $$ S = \sst{(x,y,z)}{x,yÝ[0,1], \, x\ge y,\, zÝ[xy,2xy]}$$ \bsk % \bsk \noindent {\bf (3)} (Total: 2.5 pontos). Calcule a área de: % $$ P = \sst{(x,y,z)}{x^2+y^2 \le 1, \, z = 1-(x^2+y^2)}$$ \bsk \noindent {\bf (4)} (Total: 2.5 pontos). Seja: % $$ C = \sst{(x,y)}{(x-2)^2 + (y-1)^2 \le 1, \, x \le 2, y \le 1}.$$ a) (1.0 pts) Encontre uma mudança de variáveis que transforme $C$ num retângulo. b) (1.5 pts) Use esta mudança para transformar $\int\!\!\int_C f(x,y)\,dx\,dy$ numa integral sobre um retângulo. \bsk \bsk \bsk \newpage {\setlength{\parindent}{0pt} {\bf Algumas fórmulas:} Área de uma superfície $z=z(x,y)$ sobre uma região $B \subset \R^2$: % $$\int\int_B \sqrt{1 + z_x^2 + z_y^2} \;dx\,dy$$ Coordenadas polares: % $$ \begin{array}{rcl} x &=& r \cos \\ y &=& r \sen \\ r^2 &=& x^2 + y^2 \\ \end{array} \qquad dx\,dy = \bsm{x_r & x_ \\ y_r & y_} \,dr\,d = r\,dr\,d $$ Um modo de escrever a substituição (na integral simples): % $$\int_{t=\sqrt\pi}^{t=\sqrt{2\pi}} (\sen t^2)\, 2t \, dt = \subst{x = t^2 \\ t = \sqrt x \\ dx = 2t \, dt} \int_{x=\pi}^{x=2\pi} \sen x \, dx $$ \bsk \bsk A prova é para ser feita em duas horas, sem consulta. Responda claramente e justifique cada passo. Lembre que a correção irá julgar o que você escreveu, e que é impossível ler o que você pensou mas não escreveu. Lembre que a resposta esperada para cada questão não é só uma fórmula ou um número --- a ``resposta certa'' é um raciocínio claro e convincente. Outra dica: {\sl confira as suas respostas!} \ssk {\bf Boa prova!} } \newpage {\bf Mini-gabarito:} (Versão preliminar, incompleta e com erros, 2009nov25) % (find-kopkadaly4text "\n\\includegraphics[llx,lly]") % (find-kopkadaly4text "with the graphicx package") \noindent {\bf (1a)} (1.0 pts): $B_{xy} = \sm{\includegraphics[scale=1.0]{2009-2-C4-prova-1-a.eps}}$, $B_{uv} = [1,2]×[1,2]$ \noindent {\bf (1b)} (2.0 pts): $\psm{u \\ v} = \psm{x \\ yx^2}$, $\psm{x \\ y} = \psm{u \\ vu^2}$, $dx\,dy = \bsm{x_u & x_v \\ y_u & y_v} du\,dv = \bsm{1 & 0 \\ 2vu & u^2} du\,dv = u^2 du \, dv$ $\int_{x=1}^{x=2} \int_{y=x^2}^{y=2x^2} f(x,y) dy\,dx = \int_{u=1}^{u=2} \int_{v=1}^{v=2} f(u,vu^2) u^2\,dv\,du$ \noindent {\bf (1c)} (1.0 pts): $\int_{y=1}^{y=2} \int_{x=1} ^{x=\sqrt{y}} f(x,y) dx\,dy + \int_{y=2}^{y=4} \int_{x=\sqrt{y/2}}^{\sqrt{y}} f(x,y) dx\,dy + \int_{y=4}^{y=8} \int_{x=\sqrt{y/2}}^{x=2} f(x,y) dx\,dy$ \msk \noindent {\bf (2)} (1.0 pts): $S_{xy} = \sst{(x,y)}{xÝ[0,1], yÝ[0,x]}$ $¯{Vol}(X) = \int_{x=0}^{x=1} \int_{y=0}^{y=x} 2xy-xy\,dy\,dx = \int_{x=0}^{x=1} x \int_{y=0}^{y=x} y \, dy\,dx = \int_{x=0}^{x=1} x \frac{x^2}{2} \,dx = \frac{1}{2} \int_{x=0}^{x=1} x^3 \,dx = \frac{1}{2} \frac{x^4}{x} |_{x=0}^{x=1} = \frac{1}{8}$ \msk \noindent {\bf (3)} (2.5 pts): $z = 1 - (x^2+y^2)$, $z_x = -2x$, $z_y = -2y$ $\sqrt{1 + z_x^2 + z_y^2} = \sqrt{1 + 4x^2 + 4y^2} = \sqrt{1+4r^2}$ $\text{Área}(P) = \int\!\!\int_{P_{xy}} \sqrt{1+4r^2} dx\,dy = \int\!\!\int_{P_{r}} \sqrt{1+4r^2} r\,dr\,d = 2\pi \int_{r=0}^{r=1} \sqrt{1+4r^2} r\,dr = \subst{u=r^2 \\ r=\sqrt{u} \\ du=2r\,dr} 2\pi \int_{u=0}^{u=1} \sqrt{1+4u} \frac{1}{2}\,du = ... = \frac{\pi}{6}(5^{3/2}-1)$ \msk \noindent {\bf (4a)} (1.0 pts): \noindent {\bf (4b)} (1.5 pts): \end{document} % (find-maximacvsnode "Functions and Variables for draw" "Function: set_draw_defaults") % (find-maximacvsnode "Functions and Variables for draw" "object: polygon") % (find-maximacvsnode "Functions and Variables for draw" "object: rectangle") % (find-maximacvsnode "Functions and Variables for draw" "object: bars") % (find-maximacvsnode "Functions and Variables for draw" "object: parametric") % http://www.telefonica.net/web2/biomates/maxima/gpdraw/parametric/index.html % (find-maximacvsnode "Functions and Variables for draw" "option: eps_width") % (find-maximacvsnode "Functions and Variables for draw" "option: eps_height") * (eepitch-maximacvs) * (eepitch-kill) * (eepitch-maximacvs) load(draw); set_draw_defaults(); OptsR : [xrange = [0, 2], yrange = [0, 8]]; OptsG : [grid = true, axis_top =false, axis_right = false]; OptsG : [grid = false, axis_top =false, axis_right = false]; OptsT : [terminal = screen]; OptsEps(w, h, fname) := [terminal = eps, eps_width = w, eps_height = h, file_name = fname]; hif(x) := 2 * x^2; lowf(x) := x^2; Curves : [explicit(hif(x), x, 0, 2), explicit(lowf(x), x, 0, 2)]; Verticals : [parametric(1, y, y, lowf(1), hif(1)), parametric(2, y, y, lowf(2), hif(2))]; OptsE : OptsEps(6 * 0.6, 8 * 0.6, "/tmp/foo"); OptsE : OptsEps(6 * 0.6, 8 * 0.6, "2009-2-C4-prova-1-a"); apply(draw2d, append(OptsR, OptsG, OptsT, Curves, Verticals)); apply(draw2d, append(OptsR, OptsG, OptsE, Curves, Verticals)); *;; (find-fline "/tmp/") *;; (find-pspage "/tmp/foo.eps") *;; (find-pspage "2009-2-C4-prova-1-a.eps") parametric(2*cos(rrr),rrr^2,rrr,0,2*%pi) key = "This is the parametric one!!", parametric(2*cos(rrr),rrr^2,rrr,0,2*%pi))$ set_draw_defaults(); set_draw_defaults(grid = true, axis_top =false, axis_right = false); set_draw_defaults(terminal = screen); draw2d(fill_color = grey, filled_func = x^2, explicit(2 * x^2, x, 0, 2)); filled_func = false, explicit(lowf(x), x, 0, x2), explicit(hif(x), x, 0, x2) ); draw2d(terminal = eps, file_name = "2009-2-C2-prova-1", eps_width = 13 * 0.6, eps_height = 7 * 0.6, /* * (find-pspage "2009-2-C2-prova-1.eps") */ axis_top = false, axis_right = false, xrange = [0, 13], yrange = [0, 7], fill_color = grey, filled_func = lowf(x), explicit(hif(x), x, 0, x2), filled_func = false, explicit(lowf(x), x, 0, x2), explicit(hif(x), x, 0, x2) ); ;; (find-maximacvsnode "") # (find-maximacvsnode "Functions and Variables for draw" "filled_func") %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: