Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2009dnc-monads.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009dnc-monads.tex && latex 2009dnc-monads.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009dnc-monads.tex && pdflatex 2009dnc-monads.tex")) % (eev "cd ~/LATEX/ && Scp 2009dnc-monads.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (defun d () (interactive) (find-dvipage "~/LATEX/2009dnc-monads.dvi")) % (find-dvipage "~/LATEX/2009dnc-monads.dvi") % (find-pspage "~/LATEX/2009dnc-monads.pdf") % (find-pspage "~/LATEX/2009dnc-monads.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2009dnc-monads.ps 2009dnc-monads.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2009dnc-monads.ps 2009dnc-monads.dvi && ps2pdf 2009dnc-monads.ps 2009dnc-monads.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2009dnc-monads.pdf" (ee-twupfile "LATEX/2009dnc-monads.pdf") 'over) % (ee-cp "~/LATEX/2009dnc-monads.pdf" (ee-twusfile "LATEX/2009dnc-monads.pdf") 'over) \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2009dnc-monads.dnt %* % (eedn4-51-bounded) %Index of the slides: %\msk % To update the list of slides uncomment this line: %\makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") % (find-es "xypic" "two-and-three") % (find-LATEX "2008comprcat.tex" "dtt-adjunctions") \def\sm#1{\begin{smallmatrix}#1\end{smallmatrix}} \def\catAK{{\catA_T}} \def\catAEM{{\catA^T}} \def\KOBJ#1#2{[#1 \diagxyto/-->/<150> #2]} \def\EMOBJT#1#2{[#1 \diagxyto/<-/<150>^{#2} T#1]} If $L$ and $R$ are (proto-)functors going in opposite directions between two (proto-)categories, say, % $$\catB \two/<-`->/<150>^L_R \catA$$ % then a {\sl proto-adjunction}, $L \dashv R$, is an 8-uple, % $$(\catA, \catB, L, R, \flat, \sharp, \eta, \ee)$$ % that we draw as: % %D diagram adj1 %D 2Dx 100 +30 +30 +30 %D 2D 100 S1B LA <---| A T0A %D 2D | | | | %D 2D | | <-> | | %D 2D v v v v %D 2D +30 S0B B |---> RB T1A %D 2D %D 2D +20 \catB <=> \catA %D 2D %D (( S1B .tex= LRB S0B .tex= B %D S1B S0B -> .plabel= l _B %D )) %D (( T0A .tex= A T1A .tex= RLA %D T0A T1A -> .plabel= r \eta_A %D )) %D (( LA A B RB %D @ 0 @ 1 <-| %D @ 0 @ 2 -> .PLABEL= _(0.43) f^\flat %D @ 0 @ 2 -> .PLABEL= _(0.57) g %D @ 1 @ 3 -> .PLABEL= ^(0.43) f %D @ 1 @ 3 -> .PLABEL= ^(0.57) g^\sharp %D @ 0 @ 3 harrownodes nil 20 nil <-| sl^ %D @ 0 @ 3 harrownodes nil 20 nil |-> sl_ %D @ 2 @ 3 |-> %D )) %D (( \catB \catA <- sl^ .plabel= a L %D \catB \catA -> sl_ .plabel= b R %D )) %D enddiagram %D $$\diag{adj1}$$ % [Transpositions, unit, counit] There is some redundancy in this definition, as we may reconstruct some of the entities $\flat$, $\sharp$, $\eta$, $\ee$ in terms of the other ones: % %D diagram adj-redundancy %D 2Dx 100 +30 +30 +30 +30 +30 %D 2D 100 U0 <--| U1 %D 2D / | | %D 2D +15 | | <--| | %D 2D | v v %D 2D +15 | U2 <--| U3 %D 2D | | %D 2D +15 L0 <--| L1 \ | R0 <--| R1 %D 2D | | vv | | %D 2D +15 | <--| | U4 D0 | |--> | %D 2D v v | \ v v %D 2D +15 L2 |--> L3 | | R2 |--> R3 %D 2D v | %D 2D +15 D1 |--> D2 | %D 2D | | | %D 2D +15 | |--> | / %D 2D v vv %D 2D +15 D3 |--> D4 %D 2D %D 2D +15 %D 2D %D (( U0 .tex= LA U1 .tex= A %D U2 .tex= LRB U3 .tex= RB %D U4 .tex= B %D U0 U1 <-| %D U0 U4 -> .slide= -16pt .plabel= l \sm{f^\flat\;:=\\Lf;_B} %D U0 U2 -> .plabel= l Lf %D U1 U3 -> .plabel= r f %D U0 U3 harrownodes nil 20 nil <-| %D U2 U3 |-> %D U2 U4 -> .plabel= l _B %D )) %D (( D0 .tex= A %D D1 .tex= LA D2 .tex= RLA %D D3 .tex= B D4 .tex= RB %D D0 D2 -> .plabel= r \eta_A %D D1 D2 |-> %D D1 D3 -> .plabel= l g %D D2 D4 -> .plabel= r Rg %D D0 D4 -> .slide= 16pt .plabel= r \sm{g^\sharp\;:=\\\eta_A;Rg} %D D1 D4 harrownodes nil 20 nil |-> %D D3 D4 |-> %D D3 D4 -> .plabel= l _B %D )) %D (( L0 .tex= LRB L1 .tex= RB %D L2 .tex= B L3 .tex= RB %D L0 L1 <-| %D L0 L2 -> .plabel= l \sm{_B\;:=\\{\id_{RB}}^\flat} %D L1 L3 -> .plabel= r \id_{RB} %D L2 L3 |-> %D L0 L3 harrownodes nil 20 nil <-| %D )) %D (( R0 .tex= LA R1 .tex= A %D R2 .tex= LA R3 .tex= RLA %D R0 R1 <-| %D R0 R2 -> .plabel= l \id_{LA} %D R1 R3 -> .plabel= r \sm{\mu_A\;:=\\{\id_{LA}}^\sharp} %D R2 R3 |-> %D R0 R3 harrownodes nil 20 nil |-> %D )) %D enddiagram %D $$\diag{adj-redundancy}$$ A {\sl protomonad} for a proto-endofunctor $T: \catA \to \catA$ is a 4-uple: % $$(\catA, T, \eta, \mu)$$ % that we draw as: % $$A \diagxyto/->/<150>^{\eta_A} TA \diagxyto/<-/<150>^{\mu_A} TTA$$ % [unit, multiplication] A {\sl proto-comonad} for a proto-endofunctor $S: \catB \to \catB$ is a 4-uple: % $$(\catB, S, , )$$ % that we draw as: % $$B \diagxyto/<-/<150>^{_B} SB \diagxyto/->/<150>^{_B} SSB$$ % [counit, comultiplication] Each proto-adjunction induces both a proto-monad and a proto-comonad. We draw all these together as: % %D diagram adj-with-monads-1 %D 2Dx 100 +30 +30 +30 %D 2D 100 S2B %D 2D ^ %D 2D | %D 2D | %D 2D +30 S1B LA <---| A T0A %D 2D | | | | %D 2D | | <-> | | %D 2D v v v v %D 2D +30 S0B B |---> RB T1A %D 2D ^ %D 2D +15 | %D 2D | %D 2D +15 \catB <=> \catA T2A %D 2D %D (( S2B .tex= LRLRB S1B .tex= LRB S0B .tex= B %D S2B S1B <- .plabel= l _B %D S1B S0B -> .plabel= l _B %D )) %D (( T0A .tex= A T1A .tex= RLA T2A .tex= RLRLA %D T0A T1A -> .plabel= r \eta"A %D T1A T2A <- .plabel= r \mu"A %D )) %D (( LA A B RB %D @ 0 @ 1 <-| %D @ 0 @ 2 -> .PLABEL= _(0.43) f^\flat %D @ 0 @ 2 -> .PLABEL= _(0.57) g %D @ 1 @ 3 -> .PLABEL= ^(0.43) f %D @ 1 @ 3 -> .PLABEL= ^(0.57) g^\sharp %D @ 0 @ 3 harrownodes nil 20 nil <-| sl^ %D @ 0 @ 3 harrownodes nil 20 nil |-> sl_ %D @ 2 @ 3 |-> %D )) %D (( \catB \catA <- sl^ .plabel= a L %D \catB \catA -> sl_ .plabel= b R %D )) %D enddiagram %D $$\diag{adj-with-monads-1}$$ We define $\mu_A := R({\id_{RLA}}^\flat)$ and $_B := L({\id_{LRB}}^\sharp)$: %: %: \id_{RLA}:RLA->RLA \id_{LRB}:LRB->LRB %: -------------------------- --------------------------- %: {\id_{RLA}}^\flat:LRLA->LA {\id_{LRB}}^\sharp:RB->RLRB %: -------------------------------------- ------------------------------------- %: \mu_A:=R({\id_{RLA}}^\flat):RLRLA->RLA _B:=L({\id_{LRB}}^\sharp):LRB->LRLRB %: %: ^def-muA ^def-deltaB %: $$\ded{def-muA} \qquad \ded{def-deltaB}$$ We have seen how a proto-adjunction induces a proto-monad; now we will see how a proto-monad induces {\sl two} proto-adjunctions. \msk {\bf The Kleisli proto-adjunction} \ssk The {\sl Kleisli proto-category} of a proto-monad $(\catA, T, \eta, \mu)$ is the proto-category: % $$\catAK := ((\catAK)_0, \Hom_\catAK, \id_\catAK, ¢_\catAK)$$ % where $(\catAK)_0$ is equal to $\catA_0$, ut we write the objects of $(\catAK)_0$ in a funny way: an object $A Ý \catA$ becomes % $$\KOBJ{A}{TA}$$ % when we regard it as an object of $(\catAK)_0$. A morphism in $\Hom_\catAK(\KOBJ{A}{TA}, \KOBJ{C}{TC})$ is just a map $f:A \to TC$ in $\Hom_\catA(A, TC)$. We write it as $[f]: \Hom_\catAK(\KOBJ{A}{TA}, \KOBJ{C}{TC})$ to stress that its (formal) type is different from $f$. The identity operation, $\id_\catAK$, is the $\eta$ (the ``unit'') of the monad in disguise: % $$\id_\catAK(\KOBJ{A}{TA}) := [\eta_\catA]$$ Note that: %: %: A:\catA_0 %: ------------ %: \eta_A:A->TA %: ----------------------------------- %: [\eta_A]:\KOBJ{A}{TA}->\KOBJ{A}{TA} %: ---------------------------------------------------------------Ð{ren} %: \id_\catAK(\KOBJ{A}{TA}):\Hom_\catAK(\KOBJ{A}{TA},\KOBJ{A}{TA}) %: %: ^typing-id-kleisli %: $$\ded{typing-id-kleisli}$$ The composition, $¢_\catAK$, needs a trick: if $f:A \to TC$ and $g: C \to TE$ then $[f];[g] := [f;Tg;\mu_E]$. In diagrams: % %D diagram kleisli-id-and-comp %D 2Dx 100 +60 +30 +30 %D 2D 100 A0 A{} %D 2D | \ %D 2D | \ %D 2D v v %D 2D +30 A1 TA %D 2D %D 2D +30 KA A %D 2D | \ %D 2D | \ %D 2D v v %D 2D +30 KC C ..> TC %D 2D | \ \ %D 2D | \ \ %D 2D v v v %D 2D +30 KE E ..> TE <-- TTE %D 2D %D (( A0 .tex= \usebox{\myboxa} %D A1 .tex= \usebox{\myboxa} %D A0 A1 -> .plabel= r \id=[\eta_A] %D )) %D (( A{} TA -> .plabel= r \eta_A %D )) %D (( KA .tex= \usebox{\myboxa} %D KC .tex= \usebox{\myboxc} %D KE .tex= \usebox{\myboxe} %D KA KC -> .plabel= r [f] %D KC KE -> .plabel= r [g] % D KA KE -> .slide= 25pt .plabel= r \sm{[f];[g]\;:=\\"[f;Tg;\mu_E]} %D KA KE -> .slide= 27pt .plabel= r \sm{[f];[g]\;:=\\"[f;Tg;\mu_E]} %D )) %D (( A TC -> .plabel= r f %D C TC --> %D C TE -> .plabel= r g TC TTE -> .plabel= r Tg %D E TE --> TE TTE <- .plabel= b \mu_E %D )) %D %D enddiagram %D $$\savebox{\myboxa}{$\KOBJ{A}{TA}$} \savebox{\myboxc}{$\KOBJ{C}{TC}$} \savebox{\myboxe}{$\KOBJ{E}{TE}$} \diag{kleisli-id-and-comp} $$ The dashed arrow in, say, $\KOBJ{A}{TA}$, is to suggest three things: that morphisms in $\catAK$ follow the dirrection of the `$\diagxyto/-->/<150>$', that a morphism $A \to TA$ is not part of the definition of an object $\KOBJ{A}{TA}$, that the `$\diagxyto/-->/<150>$' is the ghost of the unit of the monad --- the unit would go from $A$ to $TA$, but it is not used in the definitions; nevertheless, its memory remains. \msk We can draw the Kleisli (proto-)adjunction as: % %D diagram kleisli-adj %D 2Dx 100 +50 +30 +25 %D 2D 100 S2B %D 2D ^ %D 2D | %D 2D | %D 2D +30 S1B KA <---| A T0A %D 2D | | | | %D 2D | | <-> | | %D 2D v v v v %D 2D +30 S0B KC |---> TC T1A %D 2D ^ %D 2D +15 | %D 2D | %D 2D +15 \catAK <=> \catA T2A %D 2D %D (( KA .tex= \usebox{\myboxa} %D KC .tex= \usebox{\myboxc} %D KA A <-| %D KA KC -> .PLABEL= _(0.41) f^\flat:=[f] %D KA KC -> .PLABEL= _(0.59) [g] %D A TC -> .PLABEL= ^(0.41) f %D A TC -> .PLABEL= ^(0.59) [g]^\sharp:=g %D KA TC harrownodes nil 20 nil <-| sl^ %D KA TC harrownodes nil 20 nil |-> sl_ %D KC TC |-> %D )) %D (( \catAK \catA %D @ 0 @ 1 <- sl^ .plabel= a L_T %D @ 0 @ 1 -> sl_ .plabel= b R_T %D )) %D (( S2B .tex= \usebox{\myboxe} %D S1B .tex= \usebox{\myboxd} %D S0B .tex= \usebox{\myboxc} %D S2B S1B <- .plabel= l \mu? %D S1B S0B -> .plabel= l \cc %D )) %D (( T0A .tex= A %D T1A .tex= TA %D T2A .tex= TTA %D T0A T1A -> .plabel= r \eta_A %D T1A T2A <- .plabel= r \mu_A %D )) %D enddiagram %D $$\savebox{\myboxa}{$\KOBJ{A}{TA}$} \savebox{\myboxc}{$\KOBJ{C}{TC}$} \savebox{\myboxd}{$\KOBJ{TC}{TTC}$} \savebox{\myboxe}{$\KOBJ{TTC}{TTTC}$} \diag{kleisli-adj} $$ \bsk {\bf The Eilenberg-Moore proto-adjunction} \msk The {\sl Eilenberg-Moore proto-category} for a proto-monad $(\catA, T, \eta, \mu)$ is: % $$\catAEM := ((\catAEM)_0, \Hom_\catAEM, \id_\catAEM, ¢_\catAEM)$$ % where an object of $(\catAEM)_0$ is a pair $(A,\aa)$ (a ``proto-algebra''), that we write as: % $$\EMOBJT{A}{\aa}$$ % We use a non-dashed arrow, `$\diagxyto/<-/<150>$', to stress that the map $\aa:\Hom_\catA(TA, A)$ is part of the definition of the object. A (proto-)morphism $f:\EMOBJT{A}{\aa} \to \EMOBJT{C}{\cc}$ is just a morphism $f:\Hom_\catA(A,C)$. The identity $\id_\catAEM$ and the composition $¢_\catAEM$ are defined in the obvious way (inherited from $\catA$). The Eilenberg-Moore adjunction can be drawn as: % %D diagram em-adj %D 2Dx 100 +50 +40 +30 %D 2D 100 S2B %D 2D ^ %D 2D | %D 2D | %D 2D +30 S1B EMA <---| A T0A %D 2D | | | | %D 2D | | <-> | | %D 2D v v v v %D 2D +30 S0B EMC |---> TC T1A %D 2D ^ %D 2D +15 \catAEM <=> \catA | %D 2D | %D 2D +15 T2A %D 2D %D (( EMA .tex= \usebox{\myboxa} %D EMC .tex= \usebox{\myboxc} %D EMA A <-| %D EMA EMC -> .PLABEL= _(0.41) f^\flat:=Tf;\cc %D EMA EMC -> .PLABEL= _(0.59) g %D A TC -> .PLABEL= ^(0.41) f %D A TC -> .PLABEL= ^(0.59) g^\sharp:=\eta_A;g %D EMA TC harrownodes nil 20 nil <-| sl^ %D EMA TC harrownodes nil 20 nil |-> sl_ %D EMC TC |-> %D )) %D (( \catAEM \catA %D @ 0 @ 1 <- sl^ .plabel= a L^T %D @ 0 @ 1 -> sl_ .plabel= b R^T %D )) %D (( S2B .tex= \usebox{\myboxe} %D S1B .tex= \usebox{\myboxd} %D S0B .tex= \usebox{\myboxc} %D S2B S1B <- .plabel= l \mu? %D S1B S0B -> .plabel= l \cc %D )) %D (( T0A .tex= A %D T1A .tex= TA %D T2A .tex= TTA %D T0A T1A -> .plabel= r \eta_A %D T1A T2A <- .plabel= r \mu_A %D )) %D enddiagram %D $$\savebox{\myboxa}{$\EMOBJT{TA}{\mu_A}$} \savebox{\myboxc}{$\EMOBJT{C}{\cc}$} \savebox{\myboxd}{$\EMOBJT{TC}{T\cc}$} \savebox{\myboxe}{$\EMOBJT{TTC}{TT\cc}$} \diag{em-adj} $$ % where [two triangles showing the transpositions]: %D diagram em-transpositions %D 2Dx 100 %D 2D 100 %D 2D %D 2D +20 %D 2D %D (( %D %D )) %D enddiagram %D $$\diag{em-transpositions}$$ \bsk {\bf The Comparison Theorem} \msk If $\catB \two/<-`->/<150>^L_R \catA$ and $\catB' \two/<-`->/<150>^{L'}_{R'} \catA$ are two proto-adjunctions --- the full definition with `$\flat$'s, `$\sharp$'s, `$\eta$'s and `$$'s will not be relevant now --- then a {\sl proto-comparison} from $L' \dashv R'$ to $L \dashv R$ is just a proto-functor $F:B' \to B$ such that %D diagram comparison %D 2Dx 100 +40 %D 2D 100 \catB' %D 2D %D 2D +20 \catA %D 2D %D 2D +20 \catB %D 2D %D (( \catB' \catA \catB %D @ 0 @ 2 -> %D @ 0 @ 1 -> sl^ %D %D %D )) %D enddiagram %D $$\diag{comparison}$$ %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: