Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2010kockdiff-new.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2010kockdiff-new.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2010kockdiff-new.pdf")) % (defun b () (interactive) (find-zsh "bibtex 2010kockdiff-new; makeindex 2010kockdiff-new")) % (defun e () (interactive) (find-LATEX "2010kockdiff-new.tex")) % (defun u () (interactive) (find-latex-upload-links "2010kockdiff-new")) % (find-xpdfpage "~/LATEX/2010kockdiff-new.pdf") % (find-sh0 "cp -v ~/LATEX/2010kockdiff-new.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2010kockdiff-new.pdf /tmp/pen/") % file:///home/edrx/LATEX/2010kockdiff-new.pdf % file:///tmp/2010kockdiff-new.pdf % file:///tmp/pen/2010kockdiff-new.pdf % http://angg.twu.net/LATEX/2010kockdiff-new.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \directlua{tf:processuntil(texlines:nlines())} % \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") % \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") % %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end %L addabbrevs("\"", " ", "->", "→", "|->", "↦") %L addabbrevs("<=", "≤", "!!", "^{**}", "!", "^*") \def\cz{\check} \par Notes (very preliminary!) on downcasing: \par Kock, Anders: A simple axiomatics for differentiation. \par Math. Scand. 40 (1977), no. 2, 183-193. \par http://www.mscand.dk/ \par http://www.mscand.dk/article.php?id=2356 \msk \par The idea of ``downcasing'' is detailed here: \par http://angg.twu.net/math-b.html\#internal-diags-in-ct \par http://angg.twu.net/LATEX/2010diags.pdf \par Its section 17 is about ``ring objects of line type''. \defδ{\mathsf{d}} \newpage Diagrams for the definition of the map $\aa$: %D diagram diag0 %D 2Dx 100 +40 %D 2D 100 A×A×A b,b',c %D 2D | - %D 2D | | %D 2D v v %D 2D +30 A b+b'c %D 2D %D (( A×A×A A -> .plabel= l \sm{λ(a_1,a_2,a_3).\\a_1+(a_2·a_3)} %D b,b',c b+b'c |-> %D )) %D enddiagram %D $$\diag{diag0}$$ %D diagram diag1 %D 2Dx 100 %D 2Dx 100 +40 +40 +50 %D 2D 100 A×A×D <--| A×A b,b_a,δa <===== b,b_a %D 2D | | - - %D 2D | | | | %D 2D v v v v %D 2D +30 A |----> A^D b+b_aδa ===> δa|->(b+b_aδa) %D 2D %D (( A×A×D A×A A A^D %D @ 0 @ 1 <-| %D @ 0 @ 2 -> .plabel= l \cz\aa @ 1 @ 3 -> .plabel= r \aa %D @ 2 @ 3 |-> %D )) %D (( b,b_a,δa b,b_a %D b+b_aδa δa|->(b+b_aδa) %D @ 0 @ 1 <= %D @ 0 @ 2 |-> .plabel= l \cz\aa @ 1 @ 3 -> .plabel= r \aa %D @ 2 @ 3 => %D %D )) %D enddiagram %D $$\diag{diag1}$$ \msk K77's Proposition 1: $\aa:A×A \to A^D$ is a morphims of ring objects. % (find-LATEX "2008sdg.tex" "ring-object-tan-space") %D diagram TR-as-ring-object %D 2Dx 100 +35 +60 %D 2D 100 1 =====> T\R <============== (T\R)^2 %D 2D %D 2D +20 {}1 =====> (A×A) <========== (A×A)×(A×A) %D 2D %D 2D +20 * |----> (0,0) %D 2D +6 {}* |----> (1,0) %D 2D +6 (a+b,a_x+b_x) <-----| (a,a_x),(b,b_x) %D 2D +6 (ab,a_xb+b_xa) <----| (a,a_x),(b,b_x){} %D 2D %D (( 1 T\R -> sl^ .plabel= a 0 %D 1 T\R -> sl_ .plabel= b 1 %D T\R (T\R)^2 <- sl^ .plabel= a + %D T\R (T\R)^2 <- sl_ .plabel= b · %D )) %D (( {}1 (A×A) -> sl^ .plabel= a 0 %D {}1 (A×A) -> sl_ .plabel= b 1 %D (A×A) (A×A)×(A×A) <- sl^ .plabel= a + %D (A×A) (A×A)×(A×A) <- sl_ .plabel= b · %D )) %D (( (a+b,a_x+b_x) .tex= (b+c,b_a+c_a) (a,a_x),(b,b_x) .tex= (b,b_a),(c,c_a) %D (ab,a_xb+b_xa) .tex= (bc,b_ac+bc_a) (a,a_x),(b,b_x){} .tex= (b,b_a),(c,c_a) %D )) %D (( * (0,0) |-> %D {}* (1,0) |-> %D (a+b,a_x+b_x) (a,a_x),(b,b_x) <-| %D (ab,a_xb+b_xa) (a,a_x),(b,b_x){} <-| %D )) %D enddiagram %D $$\diag{TR-as-ring-object}$$ %D diagram diag3-std %D 2Dx 100 +60 %D 2D 100 A0 <----- A1 %D 2D | | %D 2D | | %D 2D | v %D 2D +30 | A3' %D 2D | ^ %D 2D v | %D 2D +20 A2' v %D 2D +10 A2 <----- A3 %D 2D %D (( A0 .tex= (A×A) A1 .tex= (A×A)×(A×A) %D A2' .tex= A^D A3' .tex= A^D×A^D y+= 10 %D A2 .tex= A^D A3 .tex= (A×A)^D %D A0 A1 <- .plabel= a * %D A0 A2 -> .plabel= l \aa A1 A3' -> .plabel= r \aa×\aa A3' A3 <-> .plabel= r \cong %D A2 A3 <- .plabel= b m^D %D )) %D enddiagram %D $$\diag{diag3-std}$$ %:*+*{+}* %D diagram diag3-dnc %D 2Dx 100 +90 %D 2D 100 A0 <----- A1 %D 2D | | %D 2D | | %D 2D | v %D 2D +30 | A3' %D 2D | ^ %D 2D v | %D 2D +20 A2' v %D 2D +10 A2 <----- A3 %D 2D %D (( A0 .tex= (bc,b_ac+bc_a) A1 .tex= (b,b_a),(c,c_a) %D A2' .tex= da|->bc+(b_ac+bc_a)da A3' .tex= (da|->b+b_ada),(da|->c+c_ada) y+= 10 %D A2 .tex= da|->(b+b_ada)(c+c_ada) A3 .tex= da|->(b+b_ada,c+c_ada) %D A0 A1 <- .plabel= a * %D A0 A2' -> .plabel= l \aa A1 A3' -> .plabel= r \aa×\aa A3' A3 <-> .plabel= r \cong %D A2 A3 <- .plabel= b m^D %D )) %D enddiagram %D $$\diag{diag3-dnc}$$ \newpage \def\defas{\;:=\;} \def\zeroT{\ulcorner 0 \urcorner {}^T} \def\oneT {\ulcorner 1 \urcorner {}^T} \def\plusT{+^T} \def\dotT {·^T} \def\zeroD{\ulcorner 0 \urcorner {}^D} \def\oneD {\ulcorner 1 \urcorner {}^D} \def\plusD{+^D} \def\dotD {·^D} \def\plushat{\hat+} \def\aacz{\check\aa} The translation to $λ$-calculus: \msk Let $\zeroT \defas λ*.(0,0)$. Let $\oneT \defas λ*.(1,0)$. Let $\plusT \defas λ((b,b_a),(c,c_a)).(b+c, b_a+c_a)$. Let $\dotT \defas λ((b,b_a),(c,c_a)).(bc, b_ac+bc_a)$. Then $(\zeroT, \oneT, \plusT, \dotT)$ is a ring object. \msk Let $\zeroD \defas λ*.λda.0$. Let $\oneD \defas λ*.λda.1$. Let $\plusD \defas λ(f_\DD,g_\DD),λda.(f(da)+g(da))$. Let $\dotD \defas λ(f_\DD,g_\DD),λda.(f(da)g(da))$. Then $(\zeroD, \oneD, \plusD, \dotD)$ is a ring object. \msk Let $\aacz \defas λ(b,b_a,da).(b+b_ada)$. Let $\aa \defas λ(b,b_a).λda.(b+b_ada)$. Then $\aa$ is a ring homomorphism. \msk Let $\plushat \defas λa.λda.(a+da)$. Let $\tau \defas λa.\ang{a,1}$. Then $\tau;\aa = \plushat$. \msk Let $\bb^\nat \defas λf_\DD.f_\DD(0)$. Then $\aa;\bb^\nat = \pi$. \msk From now on let's suppose that $\aa$ is an iso. Let $\bb \defas \aa¹;\pi$. Let $\gg \defas \aa¹;\pi'$. Then $\bb = \bb^\nat$. \msk Let's now define the derivative of a function $f:A \to A$. Let $f' \defas λa.\gg(λda.f(a+da))$. \msk First Taylor lemma: $λ(a,da).f(a+da) = λ(a,da).f(a)+f'(a)da$. Abbreviated form: $f(a+da) = f(a)+f'(a)da$. \msk Let $(f+g) \defas λa.f(a)+g(a)$. Let $(fg) \defas λa.f(a)g(a)$. Let $(f∘g) \defas λa.f(g(a))$. \msk Product rule: % $$\begin{array}{rcl} (fg)(a+da) &=& f(a+da)g(a+da) \\ &=& (f(a)+f'(a)da)(g(a)+g'(a)da) \\ &=& f(a)g(a) + (f'(a)g(a)+f(a)g'(a))da + f'(a)g'(a)da^2 \\ &=& f(a)g(a) + (f'(a)g(a)+f(a)g'(a))da \\ &=& (fg)(a) + (f'g+fg')(a)da \\ \end{array} $$ Chain rule: % $$\begin{array}{rcl} (f∘g)(a+da) &=& f(g(a+da)) \\ &=& f(g(a)+g'(a)da) \\ &=& f(g(a))+f'(g(a))g'(a)da \\ &=& (f∘g)(a)+((f'∘g)g')(a)da \\ \end{array} $$ % ---------------------------------------- \newpage \def\corn#1{\ulcorner#1\urcorner} %:*×*{×}* (Section 17 of the ``Internal Diagrams'' paper:) \msk Let $(R, \corn0, \corn1, +, ·)$ be a commutative ring in a CCC. That means: we have a diagram % %D diagram ring-object %D 2Dx 100 +35 +35 %D 2D 100 A0 ====> A1 <============== A2 %D 2D %D 2D +20 a0 |---> b0 %D 2D +6 a1 |---> b1 %D 2D +6 b2 <-------------| c2 %D 2D +6 b3 <-------------| c3 %D 2D %D (( A0 .tex= 1 A1 .tex= A A2 .tex= A×A %D a0 .tex= * b0 .tex= 0 %D a1 .tex= * b1 .tex= 1 %D b2 .tex= a+b c2 .tex= a,b %D b3 .tex= ab c3 .tex= a,b %D )) %D (( A0 A1 -> sl^ .plabel= a \corn0 %D A0 A1 -> sl_ .plabel= b \corn1 %D A1 A2 <- sl^ .plabel= a + %D A1 A2 <- sl_ .plabel= b · %D a0 b0 |-> %D a1 b1 |-> %D b2 c2 <-| %D b3 c3 <-| %D )) %D enddiagram %D $$\diag{ring-object}$$ % and the morphisms $\corn0$, $\corn1$, $+$, $·$ behave as expected. Let $D$ be the set of zero-square infinitesimals of $A$, i.e., $\sst{ε∈A}{ε^2=0}$; $D$ can be defined categorically as an equalizer. If we take $A:=\R$, then $D=\{0\}$; but if we let $A$ be a ring with nilpotent infinitesimals, then $\{0\} \subsetneq A$. % Our notation will suggest that we are in $\R$, though. \msk The main theorem of [Kock77] says that if the map % $$\begin{array}{rrcl} \aa: & A×A & \to & (D{\to}A) \\ & (a,b) & \mto & λε⠆D.(a+bε) \\ \end{array} $$ % is invertible, then we can use $\aa$ and $\aa¹$ to {\sl define} the derivative of maps from $A$ to $A$ --- {\sl every} morphism $f: A \to A$ in the category $\catC$ will be ``differentiable'' ---, and the resulting differentiation operation $f \mapsto f'$ behaves as expected: we have, for example, $(fg)'=f'g+fg'$ and $(f∘g)' = (f'∘g)g'$. Commutative rings with the property that their map $\aa$ is invertible are called {\sl ring objects of line type}. ROLTs are hard to construct, so most of the proofs about them have to be done in a very abstract setting. However, if we can use the following downcasings for $\aa$ and $\aa¹$ --- note that $\bb=(\aa¹;π)$, that $\cc=(\aa¹;π')$, and that these notations do not make immediately obvious that $\aa$ and $\aa¹$ are inverses ---, % %D diagram aa-and-aa-inverse %D 2Dx 100 +30 +30 +15 +40 +40 %D 2D 100 A0 <-- A1 --> A2 b0 <-- b1 --> b2 %D 2D ^ |^ ^ ^ |^ ^ %D 2D \ || / \ || / %D 2D \ v| / \ v| / %D 2D +30 A3 b3 %D 2D %D 2D +15 B0 <-- B1 --> B2 C0 <-- C1 --> C2 %D 2D ^ |^ ^ ^ |^ ^ %D 2D \ || / \ || / %D 2D \ v| / \ v| / %D 2D +30 B3 C3 %D 2D %D (( A0 .tex= A A1 .tex= A×A A2 .tex= A %D A3 .tex= (D{->}A) %D @ 0 @ 1 <- .plabel= a π %D @ 1 @ 2 -> .plabel= a π' %D @ 0 @ 3 <- .plabel= l \bb # \sm{\bb\;:=\\\aa¹;π} %D @ 1 @ 3 -> sl_ .PLABEL= _(0.42) \aa %D @ 1 @ 3 <- sl^ .PLABEL= ^(0.38) \aa¹ %D @ 2 @ 3 <- .plabel= r \cc %D )) %D (( B0 .tex= a B1 .tex= a,b B2 .tex= b %D B3 .tex= (ε\mapsto"a+bε) %D @ 0 @ 1 <-| .plabel= a π %D @ 1 @ 2 |-> .plabel= a π' %D @ 0 @ 3 <-| .plabel= l \bb %D @ 1 @ 3 |-> .PLABEL= _(0.43) \aa %D @ 2 @ 3 <-| .plabel= r \cc %D )) %D (( C0 .tex= f(0) C1 .tex= (f(0),f'(0)) C2 .tex= f'(0) %D C3 .tex= (ε\mapsto"f(ε)) %D @ 0 @ 1 <-| .plabel= a π %D @ 1 @ 2 |-> .plabel= a π' %D @ 0 @ 3 <-| .plabel= l \bb %D @ 1 @ 3 <-| .PLABEL= ^(0.43) \aa¹ %D @ 2 @ 3 <-| .plabel= r \cc %D )) %D enddiagram %D $$\diag{aa-and-aa-inverse}$$ % and then all the proofs in the first two sections of [Kock77] can be reconstructed from half-diagrammatic, half-$λ$-calculus-style proofs, done in the archetypal language, where the intuitive content is clear. This will be shown in a sequel to [OchsHyp]. \newpage % (find-kockdiffpage (+ -182 184) "(definition of \aa)") %D diagram first-maps %D 2Dx 100 +40 %D 2D 100 A0 -> A1 %D 2D +20 B0 -> B1 %D 2D +20 C0 -> C1 %D 2D %D ren A0 A1 ==> A×A A %D ren B0 B1 ==> A×A A %D %D (( A0 A1 -> .plabel= a + A0 A1 -> .plabel= b a,b↦a+b %D %D )) %D (( B0 B1 @ 0 @ 1 -> .plabel= a + @ 0 @ 1 -> .plabel= b a,b↦a·b %D )) %D enddiagram %D $$\pu \diag{first-maps} $$ \end{document} % Local Variables: % coding: utf-8-unix % End: