Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020badiou-low.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020badiou-low.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020badiou-low.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020badiou-low.pdf")) % (defun e () (interactive) (find-LATEX "2020badiou-low.tex")) % (defun u () (interactive) (find-latex-upload-links "2020badiou-low")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020badiou-low.pdf") % (find-sh0 "cp -v ~/LATEX/2020badiou-low.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020badiou-low.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020badiou-low.pdf % file:///tmp/2020badiou-low.pdf % file:///tmp/pen/2020badiou-low.pdf % http://angg.twu.net/LATEX/2020badiou-low.pdf % (find-LATEX "2019.mk") % «.title» (to "title") % «.2020aug04» (to "2020aug04") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \usepackage[backend=biber, style=alphabetic]{biblatex} % (find-es "tex" "biber") \addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\Id{\mathbf{Id}} % «title» (to ".title") {\setlength{\parindent}{0em} \footnotesize Notes on Alain Badiou's ``Logics of Worlds: Being and Event, 2'' (2006, translation 2009): \url{https://www.bloomsbury.com/uk/logics-of-worlds-9781441172969/} \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020badiou-low.pdf} \ssk See: \url{http://angg.twu.net/LATEX/2020favorite-conventions.pdf} \url{http://angg.twu.net/math-b.html\#favorite-conventions} I wrote these notes mostly to test if the conventions above are good enough. } % (find-books "__cats/__cats.el" "badiou-low") % (find-badioulowpage (+ 18 153) "II.3. Algebra of the Transcendental") % (find-badioulowpage (+ 18 155) "II.3.2. Function of Appearing and Formal Definition") % (find-badioulowtext (+ 18 155) "2. Function of Appearing and Formal Definition") % (find-badioulowpage (+ 18 156) "The minimal requirement") % (find-badioulowtext (+ 18 156) "The minimal requirement") % (find-badioulowpage (+ 18 157) "II.3.3. Equivalence-Structure and Order-Structure") % (find-badioulowtext (+ 18 157) "Equivalence-Structure and Order-Structure") % (find-badioulowpage (+ 18 191) "Book III Greater Logic, 2. The Object") % (find-badioulowpage (+ 18 193) "Introduction") % (find-badioulowpage (+ 18 199) "Section 1 For a New Thinking of the Object") % (find-badioulowpage (+ 18 199) "1 Transcendental indexing: the phenomenon") % (find-badioulowpage (+ 18 204) "2 The phenomenon: second approach") % (find-badioulowpage (+ 18 207) "3 Existence") % (find-badioulowpage (+ 18 211) "4 Analytic of phenomena: component and atom of appearing") % (find-badioulowpage (+ 18 217) "5 Real atoms") % (find-badioulowpage (+ 18 220) "6 Definition of an object") % (find-badioulowpage (+ 18 221) "7 Atomic logic, 1: the localization of the One") % (find-badioulowpage (+ 18 225) "8 Atomic logic, 2: compatibility and order") % (find-badioulowpage (+ 18 229) "9 Atomic logic, 3: real synthesis") % (find-badioulowpage (+ 18 231) "Section 2 Kant") % (find-badioulowpage (+ 18 243) "Section 3 Atomic Logic") % (find-badioulowpage (+ 18 243) "1 Function of appearing") % (find-badioulowpage (+ 18 245) "2 The phenomenon") % (find-badioulowpage (+ 18 246) "3 Existence") % (find-badioulowpage (+ 18 312) "A relation is an oriented connection") % (find-badioulowtext (+ 18 312) "A relation is an oriented connection") \newpage Book II: Greater Logic II.3. Algebra of the Transcendental \subsection*{II.3.2. Function of Appearing and Formal Definition of the Transcendental} (Page 157): % (find-badioulowpage (+ 18 157) "The idea--a very simple one--") % (find-badioulowtext (+ 18 157) "The idea--a very simple one--") The idea --- a very simple one --- is that in every world, given two beings $α$ and $β$ which are there, there exists a value $p$ of $\Id(α,β)$. To say that $\Id(α,β)=p$ means that, with regard to their appearing in that world, the beings $α$ and $β$ --- which remain perfectly and univocally determined in their multiple composition --- are identical `to the $p$ degree', or are $p$-identical. The essential requirement then is that the degrees $p$ are held in an order-structure, so that for instance it can make sense to say that in a fixed referential world, $α$ is more identical to $β$ than to $γ$. In formal terms, if $\Id(α,β) = p$ and $\Id(α,γ) = q$, this means that $p > q$. \newpage % (find-latexgimp-links "GIMP/badiou-low-p157") % (find-fline "~/LATEX/GIMP/badiou-low-p157.png") \includegraphics[width=12cm]{GIMP/badiou-low-p157.png} % (find-latexgimp-links "GIMP/badiou-low-p157-2") % (find-fline "~/LATEX/GIMP/badiou-low-p157-2.png") \includegraphics[width=12cm]{GIMP/badiou-low-p157-2.png} % (ph1p 5 "positional") % (ph1 "positional") % (favp 50 "functors-as-objects") % (fav "functors-as-objects") The positional notations are explained in \cite[Section 1]{PH1} and \cite[Section 7.12]{FavC}. \newpage % «2020aug04» (to ".2020aug04") Oi Caron! Tou tentando traduzir algumas definições da seção ``II.3.2. Function of Appearing and Formal Definition of the Transcendental'' do LoW pra uma terminologia mais padrão... Eu deixei a câmera do celular aberta o tempo todo? Caramba... Vou escrever umas duvidas aqui, aé quando você tiver tempo você ou me responde ou me diz pra onde eu devo mandar... Os ``degress of identity'' vão ser os elementos da álgebra de Heyting dos valores de verdade do topos Num dos exemplos que eu discuti com você e com o Gabriel a gente começava com o ``house-shaped DAG'' $H$ que aparece aqui na pagina 27, \url{http://angg.twu.net/LATEX/2017planar-has-1.pdf\#page=27} E aí quando a gente montava o topos $\Set^H$ esse topos tinha 10 valores de verdade - a figura no topo da página 27. Seja 1 o objeto terminal do topos $\Set^H$. Os valores de verdade desse topos podem tanto ser vistos como os subobjetos desse 1 - lembra que a gente pode usar a notacao $\Sub(A)$ pra falar do conjunto dos subobjetos de um objeto $A$ quanto podem ser vistos como os morfismos do objeto 1 pro objeto $\Omega$, onde $\Omega$ é o classificador. Eu acho o $\Sub(1)$ mais fácil de visualizar. Se a gente tem um objeto $A$ num topos os pontos de $A$ são os morfismos do objeto 1 pro objeto $A$ Eu tou com a impressão de que quando o Badiou define $\Id(\alpha, \beta)$ esses $\alpha$ e $\beta$ (que na terminologia dele são ``multiples'', se não me engano) são uma coisa um pouco mais complicada que "pontos" do topos... ...porque tanto $\alpha$ quando $\beta$ podem ter um ``extent'' que é um subobjeto do 1 que não é o próprio 1. Na pagina 246 do PDF do LoW que eu tenho o Badiou define $𝐛E x := \Id(x,x)$ e um ``multiple'' $\alpha$ não é um morfismo de 1 para $A$, e sim um morfismo de $𝐛E\alpha$ para $A$. Nao lembro a terminologia usual em topos theory pra isso... acho que a gente chama de ``partial points'' ao inves de ``points''. Se for isso eu posso fazer uns desenhos e mandar pro pessoal do seminário Na verdade eu já tenho vários desses desenhos, é só reciclá-los... \printbibliography \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020badiou-low veryclean make -f 2019.mk STEM=2020badiou-low pdf % Local Variables: % coding: utf-8-unix % ee-tla: "blo" % End: