Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020cwm.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020cwm.tex" :end)) % (defun C () (interactive) (find-LATEXSH "lualatex 2020cwm.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2020cwm.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020cwm.pdf")) % (defun e () (interactive) (find-LATEX "2020cwm.tex")) % (defun u () (interactive) (find-latex-upload-links "2020cwm")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun d0 () (interactive) (find-ebuffer "2020cwm.pdf")) % (code-eec-LATEX "2020cwm") % (find-pdf-page "~/LATEX/2020cwm.pdf") % (find-sh0 "cp -v ~/LATEX/2020cwm.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020cwm.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020cwm.pdf % file:///tmp/2020cwm.pdf % file:///tmp/pen/2020cwm.pdf % http://angg.twu.net/LATEX/2020cwm.pdf % (find-LATEX "2019.mk") % «.title» (to "title") % «.diag:universal» (to "diag:universal") % «.universal-arrow» (to "universal-arrow") % «.universal-element» (to "universal-element") % «.comma-categories» (to "comma-categories") % «.universal-arrows» (to "universal-arrows") % «.universal-elements» (to "universal-elements") % «.ue-quotient-set» (to "ue-quotient-set") % «.yoneda-lemma» (to "yoneda-lemma") % % «.original-univ-arrows» (to "original-univ-arrows") % «.cwm-page-55» (to "cwm-page-55") % «.cwm-page-57» (to "cwm-page-57") % «.cwm-page-58» (to "cwm-page-58") % «.cwm-page-59» (to "cwm-page-59") % % «.creation-of-limits» (to "creation-of-limits") % «.adjoints-on-limits» (to "adjoints-on-limits") % «.kan-extensions» (to "kan-extensions") % «.cwm-page-236» (to "cwm-page-236") % % «.elisp» (to "elisp") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{stmaryrd} \usepackage{indentfirst} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \directlua{dofile "2020dn6-error-handling.lua"} % (find-LATEX "2020dn6-error-handling.lua") \long\def\ColorRed #1{{\color{Red1}#1}} \long\def\ColorViolet#1{{\color{MagentaVioletLight}#1}} \long\def\ColorViolet#1{{\color{Violet!50!black}#1}} \long\def\ColorGreen #1{{\color{SpringDarkHard}#1}} \long\def\ColorGreen #1{{\color{SpringGreen4}#1}} \long\def\ColorGreen #1{{\color{SpringGreenDark}#1}} \long\def\ColorGray #1{{\color{GrayLight}#1}} \long\def\ColorGray #1{{\color{black!30!white}#1}} \def\nameof#1{\ulcorner#1\urcorner} \def\univ {\mathrm{univ}} \def\Ran {\mathrm{Ran}} \def\Nat {\mathrm{Nat}} \def\CoLim {\mathrm{Colim}} \def\Lim {\mathrm{Lim}} \def\Liml {\underset{\longleftarrow}{\Lim}} \def\Limr {\underset{\longrightarrow}{\Lim}} \def\Cone {\mathrm{Cone}} \def\Vct {\textbf{Vct}} \def\Fld {\textbf{Fld}} \def\Dom {\textbf{Dom}} \def\Met {\textbf{Met}} \def\CMet {\textbf{CMet}} % %L -- From: (find-es "dednat" "at:") % %L % %L Node = Class { % %L type = "Node", % %L __tostring = function (node) return mytostring(node) end, % %L __index = { % %L v = function (node) return v(node.x,node.y) end, % %L setv = function (node,v) node.x=v[1]; node.y=v[2]; return node end, % %L }, % %L } % %L storenode = function (node) % %L node = Node(node) % %L table.insert(nodes, node) % %L node.noden = #nodes -- nodes[node.noden] == node % %L if node.tag then -- was: "and not nodes[node.tag]"... % %L nodes[node.tag] = node -- nodes[node.tag] == node % %L end % %L return node % %L end % %L % %L tow = function (vv, ww, a, b) % %L local diff = ww-vv % %L local diffrot90 = v(diff[2], -diff[1]) % %L return vv + (a or 0.5)*diff + (b or 0)*diffrot90 % %L end % %L ats_to_vs = function (str) % %L return (str:gsub("@(%w+)", "nodes[\"%1\"]:v()")) % %L end % %L forths["newnode:"] = function () % %L local tag = getword() % %L ds:push(storenode({tag=tag, TeX=phantomnode})) % %L end % %L forths["at:"] = function () % %L local node = ds:pick(0) % %L local vexpr = getword() % %L node:setv(expr(ats_to_vs(vexpr))) % %L end % «title» (to ".title") {\setlength{\parindent}{0em} \footnotesize Notes on Saunders MacLane's [CWM], a.k.a.: ``Categories for the Working Mathematician (2nd ed.)'' (Springer, 1998) \url{https://link.springer.com/book/10.1007/978-1-4612-9839-7} \url{https://en.wikipedia.org/wiki/Categories_for_the_Working_Mathematician} \url{https://ncatlab.org/nlab/show/Categories+Work} \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020cwm.pdf} \ssk See: \url{http://angg.twu.net/LATEX/2020favorite-conventions.pdf} \url{http://angg.twu.net/math-b.html\#favorite-conventions} I wrote these notes mostly to test if the conventions above are good enough. } %D diagram comma-obj-0 %D 2Dx 100 +20 %D 2D 100 \A %D 2D | %D 2D | \f %D 2D v %D 2D +20 \B |-> \FB %D 2D %D (( \A \FB -> .plabel= r \f %D \B \FB |-> %D )) %D enddiagram %D \pu \def\commaobj#1#2#3#4{{ \left( \def\A{#1} \def\f{#4} \def\B{#2} \def\FB{#3} \diag{comma-obj-0} \right) }} % %D diagram commaobj-demo % %D 2Dx 100 % %D 2D 100 A % %D 2D % %D 2D +45 B % %D 2D % %D (( A .tex= \commaobj{A}{B}{FB}{g} BOX % %D B .tex= \commaobj{A}{B}{FB}{?} BOX % %D A B -> % %D )) % %D enddiagram % %D % $$\pu % \diag{commaobj-demo} % $$ \newpage % (find-cwm2page (+ 13 55) "III. Universals and Limits") % (find-cwm2page (+ 13 55) "1. Universal Arrows") % _ _ _ _ % __| (_) __ _ __ _ _ _ _ _ __ (_)_ _____ _ __ ___ __ _| | % / _` | |/ _` |/ _` (_) | | | '_ \| \ \ / / _ \ '__/ __|/ _` | | % | (_| | | (_| | (_| |_| |_| | | | | |\ V / __/ | \__ \ (_| | | % \__,_|_|\__,_|\__, (_)\__,_|_| |_|_| \_/ \___|_| |___/\__,_|_| % |___/ % % «diag:universal» (to ".diag:universal") % %D diagram diag:universal %D 2Dx 100 +25 +40 %D 2D 100 A1 %D 2D %D 2D +20 A2 A3 C0 %D 2D %D 2D +20 A4 A5 C1 %D 2D %D 2D +15 B0 B1 C2 %D 2D %D ren A1 ==> \ga{A1} %D ren A2 A3 C0 ==> \ga{A2} \ga{A3} 〈\ga{A2},\ga{u}〉 %D ren A4 A5 C1 ==> ∀\ga{A4} \ga{A5} 〈\ga{A4},\ga{f}〉 %D ren B0 B1 C2 ==> \ga{B0} \ga{B1} \ga{C2} %D %D (( A1 A3 -> .plabel= r \ga{u} %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!\ga{f'} %D A3 A5 -> .plabel= r \ga{Uf'} %D A2 A5 harrownodes nil 20 nil |-> %D A4 A5 |-> %D A1 A5 -> .slide= 20pt .plabel= r ∀\ga{f} %D B0 B1 -> .plabel= a \ga{U} %D C0 C1 -> .plabel= l ∃!\ga{f'} %D C2 place %D )) %D enddiagram %D \pu % «universal-arrow» (to ".universal-arrow") % (cwmp 2 "universal-arrow") % (cwma "universal-arrow") % (find-cwm2page (+ 13 55) "1. Universal Arrows") % Universal arrow --- definition: % $${ \sa{A1}{c} \sa{u}{u} \sa{A2}{r} \sa{A3}{Sr} \sa{f}{f} \sa{A4}{d} \sa{A5}{Sd} \sa{f'}{f'} \sa{Uf'}{Sf'} \sa{B0}{D} \sa{B1}{C} \sa{U}{S} \sa{C2}{(c↓S)} \diag{diag:universal} } $$ % (find-cwm2page (+ 13 56) "Bases of vector spaces") % (find-cwm2page (+ 13 56) "Fields of quotients") % Bases of vector spaces, Fields of quotients: % $${ \sa{A1}{X} \sa{u}{j} \sa{A2}{V_X} \sa{A3}{U(V_X)} \sa{f}{f} \sa{A4}{W} \sa{A5}{U(W)} \sa{f'}{f'} \sa{Uf'}{Sf'} \sa{B0}{\Vct_K} \sa{B1}{\Set} \sa{U}{U} \sa{C2}{(X↓U)} \diag{diag:universal} } \qquad { \sa{A1}{D} \sa{u}{j} \sa{A2}{Q(D)} \sa{A3}{Q(D)} \sa{f}{f} \sa{A4}{K} \sa{A5}{K} \sa{f'}{f'} \sa{Uf'}{f'} \sa{B0}{\Fld} \sa{B1}{\Dom} \sa{U}{U} \sa{C2}{(D↓U)} \diag{diag:universal} } $$ % (find-cwm2page (+ 13 56) "Complete metric spaces") % Complete metric spaces: % $${ \sa{A1}{X} \sa{u}{j} \sa{A2}{\ovl{X}} \sa{A3}{\ovl{X}} \sa{f}{f} \sa{A4}{Y} \sa{A5}{Y} \sa{f'}{f'} \sa{Uf'}{f'} \sa{B0}{\CMet} \sa{B1}{\Met} \sa{U}{U} \sa{C2}{(X↓U)} \diag{diag:universal} } $$ \newpage % «universal-element» (to ".universal-element") % (cwmp 3 "universal-element") % (cwma "universal-element") % (find-cwm2page (+ 13 57) "universal elements") % Universal element --- definition: % $${ \sa{A1}{1} \sa{u}{e} \sa{A2}{r} \sa{A3}{Hr} \sa{f}{x} \sa{A4}{d} \sa{A5}{Hd} \sa{f'}{f} \sa{Uf'}{Hf} \sa{B0}{D} \sa{B1}{\Set} \sa{U}{H} \sa{C2}{} \diag{diag:universal} } $$ % \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' % \end{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newpage % «comma-categories» (to ".comma-categories") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 13 31) "II. Constructions on Categories") % (find-cwm2page (+ 13 45) "6. Comma Categories") % (find-cwm2text (+ 13 45) "6. Comma Categories") \section*{II. Constructions on Categories} \subsection*{6. Comma Categories} (Page 45): If $b∈C$, the category of objects under $b$ is the category $(b↓C)$... If $a∈C$, the category $(C↓a)$ of objects over $a$... %D diagram ?? %D 2Dx 100 +30 +50 +30 %D 2D 100 A0 A1 D0 D1 F0 %D 2D +20 A2 A3 C0 D2 D3 F1 %D 2D +20 A4 A5 C1 D4 D5 %D 2D +15 B0 B1 C2 E0 E1 F2 %D 2D %D ren A1 A3 A5 B1 ==> b c c' C %D ren C0 C1 C2 ==> 〈f,c〉 〈f',c'〉 (b↓C) %D ren D1 D3 D5 E1 ==> c c' a C %D ren F0 F1 F2 ==> 〈c,f〉 〈c',f'〉 (C↓a) %D %D (( A1 A3 -> .plabel= r f %D A3 A5 -> .plabel= r h %D A1 A5 -> .slide= 15pt .plabel= r f' %D B1 place %D C0 C1 -> .plabel= l h %D C2 place %D )) %D (( D1 D3 -> .plabel= r f' %D D3 D5 -> .plabel= r h %D D1 D5 -> .slide= 15pt .plabel= r f %D E1 place %D F0 F1 -> .plabel= l h %D F2 place %D )) %D enddiagram %D $$\pu \diag{??} $$ (Page 46): % (find-cwm2page (+ 13 46) "objects S-under b") % (find-cwm2text (+ 13 46) "objects S-under b") % (find-cwm2page (+ 13 46) "objects T-over a") % (find-cwm2text (+ 13 46) "objects T-over a") If $b∈C$ and $S:D→C$, the category $(b↓S)$ of objects $S$-under $b$... Again, if $a∈C$ and $T:E→C$, ...a category $(T↓a)$ of objects $T$-over $a$. %D diagram ?? %D 2Dx 100 +20 +30 +50 +20 +30 %D 2D 100 A0 A1 D0 D1 F0 %D 2D +20 A2 A3 C0 D2 D3 F1 %D 2D +20 A4 A5 C1 D4 D5 %D 2D +15 B0 B1 C2 E0 E1 F2 %D 2D %D ren A1 A2 A3 A4 A5 C0 C1 ==> b d Sd d' Sd' D C %D ren C0 C1 C2 ==> 〈f,d〉 〈f',d'〉 (b↓S) %D ren D0 D1 D2 D3 D5 E0 E1 ==> e Te e' Te' a E C %D ren F0 F1 F2 ==> 〈c,f〉 〈c',f'〉 (T↓a) %D %D (( A1 A3 -> .plabel= r f %D A2 A3 |-> %D A2 A4 -> .plabel= l ? %D A3 A5 -> .plabel= r h %D A2 A5 harrownodes nil 20 nil |-> %D A4 A5 |-> %D A1 A5 -> .slide= 15pt .plabel= r f' %D B0 B1 -> .plabel= a S %D C0 C1 -> .plabel= l h %D C2 place %D )) %D (( D0 D1 |-> %D D0 D2 -> .plabel= l ? %D D1 D3 -> .plabel= r ? %D D0 D3 harrownodes nil 20 nil |-> %D D2 D3 |-> %D D3 D5 -> .plabel= r h %D D1 D5 -> .slide= 15pt .plabel= r f %D E0 E1 -> .plabel= a T %D F0 F1 -> .plabel= l h %D F2 place %D )) %D enddiagram %D $$\pu \diag{??} $$ % (find-cwm2page (+ 13 46) "Here is the general construction.") % (find-cwm2text (+ 13 46) "Here is the general construction.") Here is the general construction. The comma category $(T↓S)$... %D diagram ?? %D 2Dx 100 +15 +20 +15 +40 %D 2D 100 A0 A1 %D 2D +10 A2 A3 C0 %D 2D +20 %D 2D +10 A4 A5 %D 2D +10 A6 A7 C1 %D 2D +15 B0 %D 2D +10 B1 B2 C2 %D 2D %D 2D %D ren A0 A1 ==> e Te %D ren A2 A3 ==> d Sd %D ren A4 A5 ==> e' Te' %D ren A6 A7 ==> d' Sd' %D ren B0 ==> E %D ren B1 B2 ==> D C %D %D ren C0 C1 C2 ==> 〈e,d,f〉 〈e',d',f'〉 (T↓S) %D %D (( A0 A1 |-> %D A1 A3 -> .plabel= a f %D A2 A3 |-> %D A4 A5 |-> %D A5 A7 -> .plabel= a f' %D A6 A7 |-> %D A0 A4 -> .plabel= l k %D A1 A5 -> .plabel= r Tk %D A2 A6 -> .plabel= l h %D A3 A7 -> .plabel= r Sh %D A0 A5 harrownodes nil 20 nil |-> %D A2 A7 harrownodes nil 20 nil |-> %D %D B2 xy+= -7 -5 %D B0 B2 -> .plabel= a T %D B1 B2 -> .plabel= b S %D %D C0 xy+= 0 -5 %D C1 xy+= 0 -5 %D C2 xy+= 0 -5 %D C0 C1 -> .plabel= r 〈k,h〉 %D C2 place %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % (find-cwm2page (+ 13 55) "III. Universals and Limits") % (find-cwm2page (+ 13 55) "1. Universal Arrows") % (find-cwm2page (+ 13 57) "universal\nelements") % (find-cwm2text (+ 13 57) "universal\nelements") % (find-cwm2text (+ 13 55) "1. Universal Arrows") % (find-cwm2page (+ 13 59) "2. The Yoneda Lemma") % (find-cwm2page (+ 13 62) "3. Coproducts and Colimits") % (find-cwm2page (+ 13 68) "4. Products and Limits") % (find-cwm2page (+ 13 72) "5. Categories with Finite Products") % (find-cwm2page (+ 13 75) "6. Groups in Categories") % (find-cwm2page (+ 13 76) "7. Colimits of Representable Functors") % «universal-arrows» (to ".universal-arrows") % (cwmp 1 "universal-arrows") % (cwm "universal-arrows") \section*{III. Universals and Limits} \subsection*{1. Universal Arrows} Definition. If $S:D→C$ is a functor and $c$ an object of $C$, a universal arrow from $c$ to $S$ is pair $〈r,u〉$ such that... (see the diagram at the left below; formally and minus the types, $∀d.∀f.∃!f'.sf'∘u=f$). Equivalently, $u:c→Sr$ is universal from $c$ to $S$ when the pair $〈r,u〉$ is an initial object in the comma category $(c↓S)$... (diagram at the right below). % %D diagram universal-arrows %D 2Dx 100 +20 %D 2D 100 A1 %D 2D %D 2D +20 A2 A3 %D 2D %D 2D +20 A4 A5 %D 2D %D 2D +20 B0 B1 %D 2D %D ren A1 ==> c %D ren A2 A3 ==> r Sr %D ren A4 A5 ==> ∀d Sd %D ren B0 B1 ==> D C %D %D (( A1 A3 -> .plabel= r u %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!f' %D A3 A5 -> .plabel= r Sf' %D A4 A5 |-> %D B0 B1 -> .plabel= a S %D %D A1 A5 -> .slide= 20pt .plabel= r ∀f %D )) %D enddiagram %D %D diagram universal-arrows-comma %D 2Dx 100 %D 2D 100 A0 %D 2D +45 A1 %D 2D +30 B0 %D 2D %D ren B0 ==> (c↓S) %D %D (( A0 .tex= \commaobj{c}{r}{Sr}{u} BOX %D A1 .tex= ∀\commaobj{c}{d}{Sd}{f} BOX %D A0 A1 -> .plabel= r ∃!f' %D B0 place %D )) %D enddiagram %D $$\pu \diag{universal-arrows} \qquad \diag{universal-arrows-comma} $$ \newpage % «universal-elements» (to ".universal-elements") % (cwmp 2 "universal-elements") % (cwm "universal-elements") (p.57): The idea of universality is sometimes expressed in terms of ``universal elements''. If $D$ is a category and $H:D→\Set$ a functor, a {\sl universal element} of the functor $H$ is a pair $〈r,e〉$ consisting of an object $r∈D$ and an element $e∈Hr$ such that for every pair $〈d,x〉$ with $x∈Hd$ there is a unique arrow $f:r→d$ of $D$ with $(Hf)e=x$. % %D diagram universal-element %D 2Dx 100 +20 %D 2D 100 A1 %D 2D %D 2D +20 A2 A3 %D 2D %D 2D +20 A4 A5 %D 2D %D 2D +20 B0 B1 %D 2D %D ren A1 ==> * %D ren A2 A3 ==> r Hr %D ren A4 A5 ==> ∀d Hd %D ren B0 B1 ==> D \Set %D %D (( A1 A3 -> .plabel= r \nameof{e} %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!f %D A3 A5 -> .plabel= r Hf %D A4 A5 |-> %D B0 B1 -> .plabel= a H %D %D A1 A5 -> .slide= 20pt .plabel= r ∀\nameof{x} %D )) %D enddiagram %D %D diagram universal-element-comma %D 2Dx 100 %D 2D 100 A0 %D 2D +45 A1 %D 2D +30 B0 %D 2D %D ren B0 ==> (c↓S) %D %D (( A0 .tex= \commaobj{*}{r}{Hr}{\nameof{e}} BOX %D A1 .tex= ∀\commaobj{*}{d}{Hd}{\nameof{x}} BOX %D A0 A1 -> .plabel= r ∃!f' %D B0 place %D )) %D enddiagram %D $$\pu \diag{universal-element} \qquad \diag{universal-element-comma} $$ \newpage % «ue-quotient-set» (to ".ue-quotient-set") % (cwmp 2 "ue-quotient-set") % (cwm "ue-quotient-set") % (find-cwm2page (+ 13 57) "universal\nelements") % (find-cwm2text (+ 13 57) "universal\nelements") % (find-cwm2page (+ 13 57) "quotient set") % (find-cwm2text (+ 13 57) "quotient set") (p.57): Many familiar constructions (...) consider an equivalence relation $E$ on a set $S$, the corresponding quotient set $S/E$ (...) and the projection $p:S→S/E$. (...) Definitions (mine): if $E⊆S×S$ then we say that $f:S→X$ respects $E$ iff $∀s,s'∈E. sEs'→fs=fs'$, and $H(X) := \setofst{f:S→X}{f \text{ respects } E}$. %D diagram S/E %D 2Dx 100 +40 +30 %D 2D 100 C0 A1 %D 2D %D 2D +20 C1 A2 A3 %D 2D %D 2D +20 C2 A4 A5 %D 2D %D 2D +20 B0 B1 %D 2D %D ren A1 ==> * %D ren A2 A3 ==> S/E H(S/E) %D ren A4 A5 ==> ∀X H(X) %D ren B0 B1 ==> \Set \Set %D ren C0 C1 C2 ==> S S/E ∀X %D %D (( A1 A3 -> .plabel= r \nameof{p} %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!f' %D A3 A5 -> .plabel= r Hf' %D A4 A5 |-> %D B0 B1 -> .plabel= a H %D %D A1 A5 -> .slide= 25pt .plabel= r ∀\nameof{f} %D %D C0 C1 -> .plabel= l p %D C1 C2 -> .plabel= l ∃!f' %D C0 C2 -> .slide= 15pt .plabel= r \sm{∀f\\\text{resp.}E} %D )) %D enddiagram %D %D diagram S/E-comma %D 2Dx 100 %D 2D 100 A0 %D 2D +45 A1 %D 2D +30 B0 %D 2D %D ren B0 ==> (*↓H) %D %D (( A0 .tex= \commaobj{*}{S/E}{H(S/E)}{\nameof{p}} BOX %D A1 .tex= ∀\commaobj{*}{X}{H(X)}{\nameof{f}} BOX %D A0 A1 -> .plabel= r ∃!f' %D B0 place %D )) %D enddiagram %D $$\pu \diag{S/E} \qquad \diag{S/E-comma} $$ (p.58): The notion ``universal element'' is a special case of the notion ``universal arrow''. Indeed, if $*$ is the set with one point... Indeed if $S:D→C$ is a functor and $c∈C$ is an object, then $〈r,u:c→Sr〉$ is a universal arrow from $c$ to $S$ is and only if the pair $〈r,u∈C(c,Sr)〉$ is a universal element of the functor $H=C(c,S-)$. This is the functor which acts on objects $d$ and arrows $h$ of $D$ by: % $$d \mapsto C(c,Sd) \; , \qquad h \mapsto C(c,Sh) \; .$$ % (find-cwm2page (+ 13 58) "The dual concept is also useful") % (find-cwm2text (+ 13 58) "The dual concept is also useful") \newpage % «yoneda-lemma» (to ".yoneda-lemma") % (cwmp 4 "yoneda-lemma") % (cwm "yoneda-lemma") \subsection*{2. The Yoneda Lemma} % (find-cwm2page (+ 13 59) "2. The Yoneda Lemma") % (find-cwm2text (+ 13 59) "2. The Yoneda Lemma") % (find-cwm2page (+ 13 59) "Proposition 1.") % (find-cwm2text (+ 13 59) "Proposition 1.") Proposition 1: % %D diagram yoneda-phi-1 %D 2Dx 100 +35 %D 2D 100 A1 %D 2D | %D 2D +20 A2 |-> A3 %D 2D | | %D 2D +20 A4 |-> A5 %D 2D | | %D 2D +20 A6 |-> A7 %D 2D %D 2D +20 B0 --> B1 %D 2D %D 2D +20 C0 --> C1 %D 2D \ | %D 2D +20 C2 %D 2D %D ren A1 ==> c %D ren A2 A3 ==> r Sr %D ren A4 A5 ==> d Sd %D ren A6 A7 ==> d' Sd %D ren B0 B1 ==> D C %D ren C0 C1 C2 ==> D(r,-) C(c,S-) ? %D %D (( A1 A3 -> .plabel= r u %D A2 A3 |-> %D A2 A4 -> .plabel= l f' %D A3 A5 -> .plabel= r Sf' %D # A1 A5 -> .slide= 20pt .plabel= r \sm{K(f')∘u=\\\nameof{K(f')(u(*))}} %D A4 A5 |-> %D A4 A6 -> .plabel= l g' %D A5 A7 -> .plabel= r Sg' %D A6 A7 |-> %D %D B0 B1 -> .plabel= a S %D %D C0 C1 -> .plabel= a φ %D # C0 C2 -> .plabel= l \sm{ψ\\\text{(iso)}} %D # C1 C2 <-> %D )) %D enddiagram %D %D diagram yoneda-phi-NT-1 %D 2Dx 100 +20 +35 +30 +40 %D 2D 100 A0 B0 B1 D0 D1 %D 2D +17 D3' %D 2D +8 A1 B2 B3 D2 D3 %D 2D %D 2D +20 C0 C1 %D 2D %D ren A0 A1 ==> d d' %D ren B0 B1 B2 B3 ==> D(r,d) C(c,Sd) D(r,d') C(c,Sd') %D ren C0 C1 ==> D(r,-) C(c,S-) %D ren D0 D1 D3' ==> f' Sf'∘u Sg'∘(Sf'∘u) %D ren D2 D3 ==> g'∘f' S(g∘f)∘u %D %D (( A0 A1 -> .plabel= l f' %D B0 B1 -> .plabel= a φ_r %D B0 B2 -> .plabel= l D(r,f') %D B1 B3 -> .plabel= r C(c,Sf') %D B2 B3 -> .plabel= a φ_d %D C0 C1 -> .plabel= a φ %D D0 D1 |-> %D D0 D2 |-> %D D1 D3' |-> %D D2 D3 |-> %D )) %D enddiagram %D $$\pu \diag{yoneda-phi-1} \quad \diag{yoneda-phi-NT-1} $$ Definition. Let $D$ have small hom-sets. A representation of a functor $K:D→\Set$ is.... Proposition 2: % % (find-cwm2page (+ 13 60) "Proposition 2.") % (find-cwm2text (+ 13 60) "Proposition 2.") % %D diagram yoneda-proposition-2 %D 2Dx 100 +40 %D 2D 100 A1 %D 2D | %D 2D +20 A2 |-> A3 %D 2D | | %D 2D +20 A4 |-> A5 %D 2D | | %D 2D +20 A6 |-> A7 %D 2D %D 2D +20 B0 --> B1 %D 2D %D 2D +20 C0 --> C1 %D 2D \ | %D 2D +20 C2 %D 2D %D ren A1 ==> * %D ren A2 A3 ==> r Kr %D ren A4 A5 ==> d Kd %D ren A6 A7 ==> d' Kd; %D ren B0 B1 ==> D \Set %D ren C0 C1 C2 ==> D(r,-) \Set(*,K-) K %D %D (( A1 A3 -> .plabel= r u %D A2 A3 |-> %D A2 A4 -> .plabel= l f' %D A3 A5 -> .plabel= r Kf' %D A1 A5 -> .slide= 20pt .plabel= r \sm{K(f')∘u=\\\nameof{K(f')(u(*))}} %D A4 A5 |-> %D A4 A6 -> %D A5 A7 -> %D A6 A7 |-> %D %D B0 B1 -> .plabel= a K %D %D C0 C1 -> %D C0 C2 -> .plabel= l \sm{ψ\\\text{(iso)}} %D C1 C2 <-> %D )) %D enddiagram %D $$\pu \diag{yoneda-proposition-2} $$ \newpage \noindent (Original text + missing diagrams) % «original-univ-arrows» (to ".original-univ-arrows") % (cwmp 5 "original-univ-arrows") % (cwm "original-univ-arrows") % (find-cwm2page (+ 13 55) "III. Universals and Limits") % (find-cwm2page (+ 13 55) "1. Universal Arrows") % (find-cwm2text (+ 13 55) "1. Universal Arrows") % (find-cwm2page (+ 13 59) "2. The Yoneda Lemma") \section*{III.1. Universal Arrows} % «cwm-page-55» (to ".cwm-page-55") % (cwmp 5 "cwm-page-55") % (cwm "cwm-page-55") % (find-cwm2page (+ 13 55) "III. Universals and Limits") % (find-cwm2page (+ 13 55) "1. Universal Arrows") % (find-cwm2text (+ 13 55) "1. Universal Arrows") (Page 55): 1. Universal Arrows Definition. if $S: D→C$ is a functor and $c$ an object of $C$, a universal arrow from $c$ to $S$ is a pair $〈r, u〉$ consisting of an object $r$ of $D$ and an arrow $u: c→Sr$ of $C$, such that to every pair $〈d,f〉$ with $d$ an object of $D$ and $f: c→Sd$ an arrow of $C$, there is a unique arrow $f': r→d$ of $D$ with $S f'∘u = f$. In other words, every arrow $f$ to $S$ factors uniquely through the universal arrow $u$, as in the commutative diagram %D diagram universal-cwm-1 %D 2Dx 100 +20 +20 %D 2D 100 A0 A1 A2 %D 2D %D 2D +20 A3 A4 A5 %D 2D %D ren A0 A1 A2 ==> c Sr r %D ren A3 A4 A5 ==> c Sd d %D %D (( A0 A1 -> .plabel= a u %D A0 A3 = %D A1 A4 --> .plabel= r Sf' %D A3 A4 -> .plabel= a f %D A2 A5 -> .plabel= r f' %D )) %D enddiagram %D %D diagram universal-cwm-1-my %D 2Dx 100 +20 %D 2D 100 A1 %D 2D %D 2D +20 A2 A3 %D 2D %D 2D +20 A4 A5 %D 2D %D 2D +15 B0 B1 %D 2D %D ren A1 ==> c %D ren A2 A3 ==> r Sr %D ren A4 A5 ==> ∀d Sd %D ren B0 B1 ==> D C %D %D (( A1 A3 -> .plabel= r u %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!f' %D A3 A5 -> .plabel= r Sf' %D A4 A5 |-> %D A1 A5 -> .slide= 20pt .plabel= r ∀f %D A2 A5 harrownodes nil 20 nil |-> %D B0 B1 -> .plabel= a S %D %D )) %D enddiagram %D $$\pu \diag{universal-cwm-1} \qquad \diag{universal-cwm-1-my} \quad \begin{tabular}[c]{l} $〈r,u:c→Sr〉$ is a \\ universal arrow \\ from $c$ to $S$ \\ \end{tabular} $$ % «cwm-page-57» (to ".cwm-page-57") % (cwmp 5 "cwm-page-57") % (cwm "cwm-page-57") % (find-cwm2page (+ 13 57) "universal\nelements") % (find-cwm2text (+ 13 57) "universal\nelements") (Page 57): The idea of universality is sometimes expressed in terms of ``universal elements''. If $D$ is a category and $H: D→\Set$ a functor, a {\sl universal element} of the functor $H$ is a pair $〈r, e〉$ consisting of an object $r∈D$ and an element $e ∈ H r$ such that for every pair $〈d, x〉$ with $x ∈ H d$ there is a unique arrow $f:r→d$ of $D$ with $(Hf)e=x$. %D diagram universal-elt-cwm-1-my %D 2Dx 100 +20 %D 2D 100 A1 %D 2D %D 2D +20 A2 A3 %D 2D %D 2D +20 A4 A5 %D 2D %D 2D +15 B0 B1 %D 2D %D ren A1 ==> * %D ren A2 A3 ==> r Hr %D ren A4 A5 ==> ∀d Hd %D ren B0 B1 ==> D \Set %D %D (( A1 A3 -> .plabel= r \nameof{e} %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!f %D A3 A5 -> .plabel= r Hf %D A4 A5 |-> %D A1 A5 -> .slide= 20pt .plabel= r ∀\nameof{x} %D A2 A5 harrownodes nil 20 nil |-> %D B0 B1 -> .plabel= a H %D %D )) %D enddiagram %D $$\pu \diag{universal-elt-cwm-1-my} \quad \begin{tabular}[c]{l} $〈r,e∈Hr〉$ is a \\ universal element \\ of the functor $H$ \\ \end{tabular} $$ \newpage % «cwm-page-58» (to ".cwm-page-58") % (cwmp 6 "cwm-page-58") % (cwm "cwm-page-58") % (find-cwm2page (+ 13 58) "The notion \"universal element\"") % (find-cwm2text (+ 13 58) "The notion \"universal element\"") (Page 58, middle paragraph): The notion ``universal element'' is a special case of the notion ``universal arrow''. Indeed, if $*$ is the set with one point, then any element $e∈Hr$ can be regarded as an arrow $e: *→Hr$ in $𝐛{Ens}$. Thus a universal element $〈r, e〉$ for $H$ is exactly a universal arrow from $*$ to $H$. % %D diagram p58.1 %D 2Dx 100 +20 %D 2D 100 A1 %D 2D %D 2D +20 A2 A3 %D 2D %D 2D +20 A4 A5 %D 2D %D 2D +15 B0 B1 %D 2D %D ren A1 ==> * %D ren A2 A3 ==> r Hr %D ren A4 A5 ==> ∀d Hd %D ren B0 B1 ==> D \Set %D %D (( A1 A3 -> .plabel= r e %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!g %D A3 A5 -> .plabel= r Hg %D A4 A5 |-> %D A1 A5 -> .slide= 20pt .plabel= r ∀f %D A2 A5 harrownodes nil 20 nil |-> %D B0 B1 -> .plabel= a H %D )) %D enddiagram $$\pu \diag{p58.1} \quad \begin{tabular}[c]{l} $〈r,e∈Hr〉$ is a \\ universal element \\ of the functor $H$ \\ \end{tabular} \;\;\; \Rightarrow \;\;\; \begin{tabular}[c]{l} $〈r,e:*→Hr〉$ is a \\ universal arrow \\ from $r$ to $H$ \\ \end{tabular} $$ % (find-cwm2page (+ 13 58) "The notion \"universal element\"") % (find-cwm2text (+ 13 58) "The notion \"universal element\"") (Page 58, middle paragraph, 2nd part): Conversely, if $C$ has small hom-sets, the notion ``universal arrow'' is a special case of the notion ``universal element''. Indeed, if $S: D→C$ is a functor and $c∈C$ is an object, then $〈r, u:c→Sr〉$ is a universal arrow from $c$ to $S$ if and only if the pair $〈r, u∈C(c,Sr)〉$ is a universal element of the functor $H = C(c, S -)$. %D diagram p58.2 %D 2Dx 100 +20 %D 2D 100 A1 %D 2D +20 A2 A3 %D 2D +20 A4 A5 %D 2D +15 B0 B1 %D 2D %D ren A1 ==> c %D ren A2 A3 ==> r Sr %D ren A4 A5 ==> ∀d Sd %D ren B0 B1 ==> D C %D %D (( A1 A3 -> .plabel= r u %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!g %D A3 A5 -> .plabel= r Sg %D A4 A5 |-> %D A1 A5 -> .slide= 20pt .plabel= r ∀f %D A2 A5 harrownodes nil 20 nil |-> %D B0 B1 -> .plabel= a S %D )) %D enddiagram %D %D diagram p58.3 %D 2Dx 100 +30 %D 2D 100 A1 %D 2D +20 A2 A3 %D 2D +20 A4 A5 %D 2D +15 B0 B1 %D 2D %D ren A1 ==> * %D ren A2 A3 ==> r C(c,Sr) %D ren A4 A5 ==> ∀d C(c,Sd) %D ren B0 B1 ==> D \Set %D %D (( A1 A3 -> .plabel= r \nameof{u} %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!g %D A3 A5 -> .plabel= r Sg %D A4 A5 |-> %D A1 A5 -> .slide= 25pt .plabel= r ∀\nameof{f} %D A2 A5 harrownodes nil 20 nil |-> %D B0 B1 -> .plabel= a C(c,S-) %D )) %D enddiagram %D $$\pu \diag{p58.2} \qquad \diag{p58.3} $$ \newpage (Page 58, middle paragraph, 3rd part): This --- {\sl i.e., the functor $C(c,S-)$} --- is \ColorRed{the} functor which acts on objects $d$ and arrows $h$ of $D$ by % $$d \mapsto C(c,Sd), \qquad h \mapsto C(c,Sh).$$ %D diagram C(c,S-) %D 2Dx 100 +20 +40 +30 +30 %D 2D 100 A1 %D 2D +20 A2 A3 %D 2D +20 A4 A5 C0 C1 E0 %D 2D +20 A6 A7 C2 C3 E1 %D 2D +15 B0 B1 D0 D1 %D 2D %D ren A1 ==> c %D ren A2 A3 ==> r Sr %D ren A4 A5 ==> d Sd %D ren A6 A7 ==> d' Sd' %D ren B0 B1 ==> D C %D %D ren C0 C1 E0 ==> d C(c,Sd) f %D ren C2 C3 E1 ==> d' C(c,Sd') Sh∘f %D ren D0 D1 ==> D \Set %D %D (( A1 A3 -> # .plabel= r ? %D A2 A3 |-> %D A2 A4 -> # .plabel= l ? %D A3 A5 -> # .plabel= r ?? %D A4 A5 |-> %D A1 A5 -> .slide= 10pt .plabel= r f %D A2 A5 harrownodes nil 20 nil |-> %D A4 A6 -> .plabel= l h %D A5 A7 -> .plabel= r Sh %D A6 A7 |-> %D A1 A7 -> .slide= 20pt .plabel= r Sh∘f %D A4 A7 harrownodes nil 20 nil |-> %D %D B0 B1 -> .plabel= a S %D %D C0 C1 |-> %D C0 C2 -> .plabel= l h %D C1 C3 -> .plabel= r C(c,Sh) %D C2 C3 |-> %D D0 D1 -> .plabel= a C(c,S-) %D E0 E1 |-> %D )) %D enddiagram $$\pu \diag{C(c,S-)} $$ \newpage % «cwm-page-59» (to ".cwm-page-59") \subsection*{2. The Yoneda Lemma} % (find-cwm2page (+ 13 59) "2. The Yoneda Lemma") % (find-cwm2text (+ 13 59) "2. The Yoneda Lemma") (Page 59): Proposition 1. For a functor $S: D→C$ a pair $〈r, u: c→Sr〉$ is universal from $c$ to $S$ if and only if the function sending each $f': r→d$ into $Sf'∘u : c→Sd$ is a bijection of hom-sets % $$D(r, d) ≅ C(c, Sd).$$ %D diagram page59-1 %D 2Dx 100 +35 %D 2D 100 A1 %D 2D +20 A2 A3 %D 2D +20 A4 A5 %D 2D +20 A6 A7 %D 2D +15 B0 B1 %D 2D +15 C0 C1 %D 2D +15 D0 D1 %D 2D +8 D2 D3 %D 2D %D ren A1 ==> c %D ren A2 A3 ==> r Sr %D ren A4 A5 ==> d Sd %D ren A6 A7 ==> d' Sd' %D ren B0 B1 ==> D C %D ren C0 C1 ==> D(r,d) C(c,Sd) %D ren D0 D1 ==> f' Sf'∘u %D ren D2 D3 ==> f' f %D %D (( A1 A3 -> .plabel= r u %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!f' %D A3 A5 -> .plabel= r Sf' %D A4 A5 |-> %D A1 A5 -> .slide= 20pt .plabel= r ∀f %D A2 A5 harrownodes nil 20 nil |-> %D %D A4 A6 -> .plabel= l h %D A5 A7 -> .plabel= r Sh %D A6 A7 |-> %D # A1 A7 -> .slide= 20pt .plabel= r Sh∘f %D A4 A7 harrownodes nil 20 nil |-> %D %D B0 B1 -> .plabel= a S %D C0 C1 <-> %D D0 D1 |-> %D D2 D3 <-| %D )) %D enddiagram $$\pu \diag{page59-1} $$ \newpage (Page 59, Proposition 1, cont.) This bijection is natural in $D$. %D diagram page59-D(r,-)-is-functorial %D 2Dx 100 +20 +20 +25 +30 %D 2D 100 A1 %D 2D +20 A2 A3 %D 2D +20 A4 A5 F0 F1 F6 %D 2D +20 A6 A7 F2 F3 F7 %D 2D +15 B0 B1 F4 F5 %D 2D %D ren A1 ==> c %D ren A2 A3 ==> r Sr %D ren A4 A5 ==> d Sd %D ren A6 A7 ==> d' Sd' %D ren B0 B1 ==> D C %D ren F0 F1 ==> d D(r,d) %D ren F2 F3 ==> d' D(r,d') %D ren F4 F5 ==> D \Set %D ren F6 F7 ==> f' h∘f' %D %D (( A1 A3 -> .plabel= r u %D A2 A3 |-> %D A2 A4 -> .plabel= l f' %D A3 A5 -> .plabel= r Sf' %D A4 A5 |-> %D # A1 A5 -> .slide= 20pt .plabel= r ∀f %D A2 A5 harrownodes nil 20 nil |-> %D %D A4 A6 -> .plabel= l h %D A5 A7 -> .plabel= r Sh %D A6 A7 |-> %D # A1 A7 -> .slide= 20pt .plabel= r Sh∘f %D A4 A7 harrownodes nil 20 nil |-> %D %D B0 B1 -> .plabel= a S %D # C0 C1 <-> %D # D0 D1 |-> %D # D2 D3 <-| %D %D F0 F1 |-> %D F0 F2 -> .plabel= l h %D F1 F3 -> .plabel= r D(r,h) %D F2 F3 |-> %D F4 F5 -> .plabel= a D(r,-) %D F0 F3 harrownodes nil 20 nil |-> %D F6 F7 |-> %D )) %D enddiagram $$\pu \diag{page59-D(r,-)-is-functorial} $$ %D diagram page59-phi-is-natural %D 2Dx 100 +20 +20 +20 +35 +30 +35 %D 2D 100 A1 %D 2D +20 A2 A3 %D 2D +20 A4 A5 F0 G0 G1 I0 I1 %D 2D +17 I3' %D 2D +8 A6 A7 F1 G2 G3 I2 I3 %D 2D +15 B0 B1 H0 H1 %D 2D %D ren A1 ==> c %D ren A2 A3 ==> r Sr %D ren A4 A5 ==> d Sd %D ren A6 A7 ==> d' Sd' %D ren B0 B1 ==> D C %D ren F0 F1 ==> d d' %D ren G0 G1 G2 G3 ==> D(r,d) C(c,Sd) D(r,d') C(c,Sd') %D ren H0 H1 ==> D(r,-) C(c,S-) %D ren I0 I1 I3' ==> f' Sf'∘u Sh∘(Sf'∘u) %D ren I2 I3 ==> h∘f' S(h∘f')∘u %D %D (( A1 A3 -> .plabel= r u %D A2 A3 |-> %D A2 A4 -> .plabel= l f' %D A3 A5 -> .plabel= r Sf' %D A4 A5 |-> %D # A1 A5 -> .slide= 20pt .plabel= r ∀f %D A2 A5 harrownodes nil 20 nil |-> %D %D A4 A6 -> .plabel= l h %D A5 A7 -> .plabel= r Sh %D A6 A7 |-> %D # A1 A7 -> .slide= 20pt .plabel= r Sh∘f %D A4 A7 harrownodes nil 20 nil |-> %D %D B0 B1 -> .plabel= a S %D # C0 C1 <-> %D # D0 D1 |-> %D # D2 D3 <-| %D %D F0 F1 -> .plabel= l h %D G0 G1 -> .plabel= a φ_d %D G0 G2 -> .plabel= l D(r,h) %D G1 G3 -> .plabel= r C(c,Sh) %D G2 G3 -> .plabel= a φ_{d'} %D H0 H1 -> .plabel= a φ %D I0 I1 |-> I1 I3' |-> %D I0 I2 |-> I2 I3 |-> %D )) %D enddiagram $$\pu \diag{page59-phi-is-natural} $$ \newpage \subsection*{3. Coproducts and colimits} % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 13 55) "III. Universals and Limits") % (find-cwm2page (+ 13 62) "3. Coproducts and Colimits") % (find-cwm2page (+ 13 67) "cone") % (find-cwm2text (+ 13 67) "cone") (Page 67): Cone and limiting cone: We call $μ$ the {\sl limiting cone} or the {\sl universal cone} (from $F$). %D diagram p67 %D 2Dx 100 +35 +50 +30 %D 2D 100 A1 %D 2D +20 A2 A3 C0 C1 %D 2D +20 A4 A5 C2 C3 %D 2D +15 B0 B1 D0 D1 %D 2D %D ren A1 ==> F %D ren A2 A3 ==> \Limr\,F Δ(\Limr\,F) %D ren A4 A5 ==> ∀c Δc %D ren B0 B1 ==> C C^J %D ren C0 C1 ==> \Colim\,F F %D ren C2 C3 ==> c Δc %D ren D0 D1 ==> C C^J %D %D (( A1 A3 -> .plabel= r μ %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!t' %D A3 A5 -> .plabel= r Δt' %D A4 A5 |-> %D A1 A5 -> .slide= 35pt .plabel= r ∀τ %D A2 A5 harrownodes nil 20 nil |-> %D A2 relplace -30 0 \Colim\,F\;= %D B0 B1 -> .plabel= a Δ %D )) %D (( C0 C1 <-| %D C0 C2 -> %D C1 C3 -> %D C0 C3 harrownodes nil 20 nil <-> %D C2 C3 |-> %D D0 D1 <- sl^ .plabel= a \Colim %D D0 D1 -> sl_ .plabel= b Δ %D )) %D enddiagram %D $$\pu \diag{p67} $$ \subsection*{4. Products and limits} (Page 68): % (find-cwm2page (+ 13 68) "cone to the base F") % (find-cwm2text (+ 13 68) "cone to the base F") A {\sl limit} for a functor $F:J→C$ is a universal arrow $〈r,ν〉$ from $Δ$ to $F$. %D diagram p68-limits %D 2Dx 100 +35 +50 +30 %D 2D 100 A0 A1 %D 2D +20 A2 A3 C0 C1 %D 2D +20 A4 C2 C3 %D 2D +15 B0 B1 D0 D1 %D 2D %D ren A0 A1 ==> Δc ∀c %D ren A2 A3 ==> Δr r %D ren A4 ==> F %D ren B0 B1 ==> C^J C %D ren C0 C1 ==> Δc c %D ren C2 C3 ==> F \Lim\,F %D ren D0 D1 ==> C^J C %D %D (( A0 A1 <-| %D A0 A2 -> .plabel= l ∀? %D A1 A3 -> .plabel= r Δ? %D A0 A3 harrownodes nil 20 nil <-| %D A2 A3 |-> %D A2 A4 -> .plabel= l ν %D A0 A4 -> .slide= -15pt .plabel= l τ %D A3 relplace 20 5 \mat{=\Lim\,F\\=\Liml\,F} %D B0 B1 <- .plabel= a Δ %D )) %D (( C0 C1 <-| %D C0 C2 -> %D C1 C3 -> %D C0 C3 harrownodes nil 20 nil <-> %D C2 C3 |-> %D D0 D1 <- sl^ .plabel= a Δ %D D0 D1 -> sl_ .plabel= b \Lim %D )) %D enddiagram %D $$\pu \diag{p68-limits} $$ % (find-cwm2page (+ 13 69) "and its limiting cone") % (find-cwm2text (+ 13 69) "and its limiting cone") (Page 69): ...and its limiting cone $ν:\Lim\,F→ F$... (or more precisely $ν:Δ(\Lim\,F)→ F$) \newpage \section*{V. Limits} % «creation-of-limits» (to ".creation-of-limits") % (cwmp 14 "creation-of-limits") % (cwm "creation-of-limits") \subsection*{1. Creation of Limits} (Page 110): % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 13 110) "Theorem 1 (Completeness of Set)") % (find-cwm2text (+ 13 110) "Theorem 1 (Completeness of Set)") {\bf Theorem 1 (Completeness of $\Set$).} If the category $J$ is small, any functor $F: J→\Set$ has a limit which is the set $\Cone(*,F)$ of all cones $σ:*→F$ from the one point set $*$ to $F$, while the limiting cone $ν$, with % $$ν_j: \Cone(*,F) → F_j, \quad σ \mapsto σ_j,$$ % is for each $j$ that function sending each cone $σ$ to the element $σ_j∈Fj$. % (excp 49 "guessing-nu-2-diag") % (exc "guessing-nu-2-diag") %D diagram create-lims-thm-1 %D 2Dx 100 +20 +25 +65 +20 +30 +20 +20 %D 2D 100 A0 A1 - A2 C0 C1 - C2 %D 2D | | | | | | %D 2D +20 | A4 - A5 | C4 - C5 %D 2D | | | | %D 2D +20 A6 A7 C6 C7 %D 2D %D 2D +20 B0 B1 - B2 D0 D1 - D2 %D 2D %D ren A0 A1 A2 ==> * Δ* * %D ren A4 A5 ==> ΔL L %D ren A6 A7 ==> F_j F %D ren B0 B1 B2 ==> \Set \Set^J \Set %D %D ren C0 C1 C2 ==> X ΔX ∀X %D ren C4 C5 ==> ΔL L %D ren C6 C7 ==> F_j F %D ren D0 D1 D2 ==> \Set \Set^J \Set %D %D (( A0 A6 -> .plabel= l σ_j %D A1 A2 <-| %D A1 A7 -> .slide= -17pt .plabel= l ∀σ %D A1 A4 -> .plabel= l Δg %D A2 A5 -> .plabel= r \sm{∃!g\\:=λ*.σ} %D A1 A5 harrownodes nil 20 nil <-| %D A4 A5 <-| %D A5 relplace 27 0 :=\Hom(Δ*,F) %D A4 A7 -> .plabel= r ν:=λj.λσ.σ_j(*) %D B0 place %D B1 B2 <- sl^ .plabel= a Δ %D B1 B2 -> sl_ .plabel= b \Lim %D %D %D C0 C6 -> .plabel= l τ_j %D C1 C2 <-| %D C1 C7 -> .slide= -17pt .plabel= l ∀τ %D C1 C4 -> .plabel= l Δh %D C2 C5 -> .plabel= r \sm{∃!h\\:=λx.λj.λ*.τ_jx} %D C1 C5 harrownodes nil 20 nil <-| %D C4 C5 <-| %D C4 C7 -> .plabel= r \sm{ν:=λj.λσ.σ_j(*)\\(\univ)} %D D0 place %D D1 D2 <- sl^ .plabel= a Δ %D D1 D2 -> sl_ .plabel= b \Lim %D )) %D enddiagram %D $$\pu \diag{create-lims-thm-1} $$ \newpage (page 111): % (find-cwm2page (+ 13 111) "Theorem 2") % (find-cwm2text (+ 13 111) "Theorem 2") {\bf Theorem 2.} Let $U: \Grp→\Set$ be the forgetful functor. If $H: J→\Grp$ is such that the composite $UH$ has a limit $L$ and a limiting cone $ν: L→UH$ in $Set$, then there is exactly one group structure on the set $L$ for which each arrow $ν_j: L → UH_j$ of the cone $ν$ is a morphism of groups; moreover, this group $L$ is a limit of $H$ with $ν$ as limiting cone. %D diagram create-lims-thm-2 %D 2Dx 100 +20 +25 +20 +20 +30 +20 +20 %D 2D 100 A0 A1 - A2 %D 2D | | | %D 2D +20 | A4 - A5 C0 C1 - C2 %D 2D | | | | | %D 2D +20 A6 A7 | C4 - C5 %D 2D | | %D 2D +20 B0 B1 - B2 C6 C7 %D 2D %D 2D +20 D0 D1 - D2 %D 2D %D 2D %D ren A0 A1 A2 ==> G ΔG ∀G %D ren A4 A5 ==> ΔK ∃!K %D ren A6 A7 ==> H H %D ren B0 B1 B2 ==> \Grp \Grp^J \Grp %D %D ren C0 C1 C2 ==> UG ΔUG ∀UG %D ren C4 C5 ==> ΔL L %D ren C6 C7 ==> UH UH %D ren D0 D1 D2 ==> \Set \Set^J \Set %D %D (( A0 A6 -> .plabel= l λ %D A1 A2 <-| %D A1 A7 -> .slide= -15pt %D A1 A4 -> %D A2 A5 -> %D A1 A5 harrownodes nil 20 nil <-| %D A4 A5 <-| %D A4 A7 -> %D B0 place %D B1 B2 <- sl^ .plabel= a Δ %D B1 B2 -> sl_ .plabel= b \Lim %D %D C0 C6 -> .plabel= l λ %D C1 C2 <-| %D C1 C7 -> .slide= -15pt %D C1 C4 -> %D C2 C5 -> %D C1 C5 harrownodes nil 20 nil <-| %D C4 C5 <-| %D C4 C7 -> .plabel= r \sm{ν\\(\univ)} %D D0 place %D D1 D2 <- sl^ .plabel= a Δ %D D1 D2 -> sl_ .plabel= b \Lim %D )) %D enddiagram %D $$\pu \diag{create-lims-thm-2} $$ \bsk (Page 112): % (find-cwm2page (+ 13 112) "Definition. A functor" "creates limits") % (find-cwm2text (+ 13 112) "Definition. A functor" "creates limits") {\bf Def:} A functor $V: A → X$ creates limits for a functor $F: J → A$ if (i) To every limiting cone $τ: x→VF$ in $X$ there is exactly one pair $〈a,σ〉$ consisting of an object $a∈A$ with $Va = x$ and a cone $σ:a→F$ with $Vσ=τ$, and if, moreover, (ii) This cone $σ:a→F$ is a limiting cone in A. %D diagram ?? %D 2Dx 100 +20 +20 %D 2D 100 A0 - A1 %D 2D | \ \ %D 2D +20 A2 B0 - B1 %D 2D \ | %D 2D +20 B2 %D 2D %D 2D +15 C0 - C1 %D 2D \ %D 2D +20 C2 - C3 %D 2D %D ren A0 A1 A2 ==> Δa ∃!a F %D ren B0 B1 B2 ==> Δx ∀x VF %D ren C0 C1 C2 C3 ==> A^J A X^J X %D %D (( A0 A1 <-| %D A0 A2 -> .plabel= l \sm{\phantom{ooo}∃!σ\\(\univ)} %D B0 B1 <-| %D B0 B2 -> .plabel= r \sm{∀τ\;(=Vσ)\\\univ\phantom{ooooo}} %D newnode: B1' at: @B1+v(15,0) .TeX= ({=}Va) place %D %D A0 B0 |-> %D A1 B1 |-> %D A2 B2 |-> %D %D C0 C1 <- sl^ %D C0 C1 -> sl_ %D C2 C3 <- sl^ %D C2 C3 -> sl_ %D %D C1 C3 -> .plabel= r V %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % «adjoints-on-limits» (to ".adjoints-on-limits") \subsection*{5. Adjoints on Limits} % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 13 118) "5. Adjoints on Limits") % (find-cwm2text (+ 13 118) "5. Adjoints on Limits") (Page 118): One of the most useful properties of adjoints is this: A functor which is a right adjoint preserves all the limits which exist in its domain: {\bf Theorem 1.} {\sl If the functor $G: A → X$ has a left adjoint, while the functor $T: J → A$ has a limiting cone $τ: a \tnto T$ in $A$, then $G T$ has the limiting cone $Gτ: Ga \tnto GT$ in $X$.} % (favp 34 "comma-categories") % (fav "comma-categories") $$\begin{array}{rl} \text{Take a limiting cone} & τ:a \tnto T \text{ in } A, \\ \text{i.e.,} & τ:Δa→T \text{ in } A^J. \\ \text{Suppose that $σ$ is a cone} & σ:x \tnto GT \text{ in } X, \\ \text{i.e.,} & σ:Δx→GT \text{ in } X^J. \\ \text{For every} & i∈J \\ \text{we have} & Ti∈A, \\ & GTi∈X, \\ & (Δx)i=x∈X, \\ \text{so} & σ_i:(Δx)i→GTi \text{ in } X, \\ \text{or, equivalently,} & σ_i:x→GTi \text{ in } X. \\ \text{So} & (σ_i)^♭:Fx→Ti \text{ in } A; \\ \text{equivalently,} & (σ_i)^♭:(ΔFx)i→Ti \text{ in } A. \\ \text{We can glue these `$(σ_i)^♭$'s to a} & σ^♭:ΔFx→T \text{ in } A^J; \\ \text{it is a cone} & σ^♭:Fx→T \text{ in } A. \\ \\ \\ \end{array} $$ %D diagram ?? %D 2Dx 100 +25 %D 2D 100 A0 A1 %D 2D %D 2D +20 A2 A3 %D 2D %D 2D +15 B0 B1 %D 2D %D ren A0 A1 ==> Δa ΔGa %D ren A2 A3 ==> T GT %D ren B0 B1 ==> A X %D %D (( A0 A1 |-> %D A0 A2 -> .plabel= l \sm{τ\\(\univ)} %D A1 A3 -> .plabel= r \sm{Gτ\\(\univ)} %D A0 A3 harrownodes nil 20 nil |-> %D A2 A3 |-> %D B0 B1 <- sl^ .plabel= a F %D B0 B1 -> sl_ .plabel= b G %D %D )) %D enddiagram %D $$\pu \diag{??} $$ This proof can also be cast in a more sophisticated form by using the fact that Lim is right adjoint to the diagonal functor .1. In fact, given an adjunction... % (riep 5 "4.5.2._RAPL") % (rie "4.5.2._RAPL") %D diagram RAPL-2 %D 2Dx 100 +20 +40 +40 +40 %D 2D 100 A0 <--| A1 %D 2D +20 A2 |--> A3 %D 2D +10 A4 <--| A5 %D 2D +20 A6 A7' A7 %D 2D %D 2D +20 B0 <==> B1 %D 2D +30 B2' B2 <==> B3 %D 2D %D ren A0 A1 ==> ΔLA=L^\catIΔA ΔA %D ren A2 A3 ==> D R^{\catI}D %D ren A4 A5 ==> LA A %D ren A6 A7' A7 ==> \lim\,D R(\lim\,D) \lim(R^\catI\,D) %D ren B0 B1 ==> A^J X^J %D ren B2 B3 ==> A X %D ren B2' ==> J %D %D (( A7' xy+= 5 0 %D %D # Horizontal arrows: %D A0 A1 <-| %D A2 A3 |-> %D A4 A5 <-| %D A6 A7' |-> %D B0 B1 <- sl^ .plabel= a F^J %D B0 B1 -> sl_ .plabel= b G^J %D B2 B3 <- sl^ .plabel= a F %D B2 B3 -> sl_ .plabel= b G %D %D # Vertical arrows: %D A0 A2 -> %D A1 A3 -> %D A4 A6 -> %D A5 A7 -> %D A5 A7' -> %D %D # Diagonal arrows: %D A0 A4 <-| %D A1 A5 <-| %D A2 A6 |-> %D A3 A7 |-> %D %D B0 B2 <- sl^ .plabel= a Δ %D B0 B2 -> sl_ .plabel= b \Liml %D B1 B3 <- sl^ .plabel= a Δ %D B1 B3 -> sl_ .plabel= b \Liml %D B2' B2 -> .plabel= a T %D )) %D enddiagram %D $$\pu \diag{RAPL-2} $$ \newpage % _ __ % | |/ /__ _ _ __ % | ' // _` | '_ \ % | . \ (_| | | | | % |_|\_\__,_|_| |_| % % «kan-extensions» (to ".kan-extensions") \section*{X. Kan Extensions} \subsection*{3. The Kan Extension} % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 13 233) "X. Kan Extensions") % (find-cwm2page (+ 13 236) "3. The Kan Extension") \def\Dn#1{\Downarrow\scriptstyle #1} % «cwm-page-236» (to ".cwm-page-236") % (favp 45 "kan-extensions") % (fav "kan-extensions") %D diagram kan-1 %D 2Dx 100 +35 %D 2D 100 A0 - A1 %D 2D | | %D 2D +20 A2 - A3 %D 2D | %D 2D +20 A4 %D 2D %D 2D +15 B0 = B1 %D 2D %D 2D +15 C0 - C1 %D 2D %D ren A0 A1 ==> SK ∀S %D ren A2 A3 ==> RK R{:=}\Ran_KT %D ren A4 ==> T %D ren B0 B1 ==> A^M A^C %D ren C0 C1 ==> M C %D %D (( A0 A1 <-| %D A0 A2 -> .plabel= l σK %D A1 A3 -> .plabel= r \sm{∃!σ.\\α=ε·σK} %D A0 A3 harrownodes nil 20 nil <-| %D A2 A3 <-| %D A2 A4 -> .plabel= l \sm{ε\\(\univ)} %D A0 A4 -> .slide= -30pt .plabel= l ∀α %D B0 B1 <- sl^ .plabel= a A^K %D B0 B1 -> sl_ .plabel= b \Ran_K %D C0 C1 -> .plabel= a K %D )) %D enddiagram %D %D diagram kan-2-cells-1 %D 2Dx 100 +25 +25 %D 2D 100 A1 %D 2D / \ %D 2D +25 A0 ---- A2 %D 2D %D ren A0 A1 A2 ==> M C A %D %D (( A0 A1 -> .plabel= a K %D A1 A2 -> .curve= _10pt .plabel= m R %D A1 A2 -> .curve= ^20pt .plabel= a ∀S %D A0 A2 -> .plabel= b T %D A0 A2 midpoint relplace -4 -8 \Dn{ε} %D A1 A2 midpoint relplace 4 -2 \Dn{∃!σ} %D )) %D enddiagram %D $$\pu \diag{kan-1} \qquad \quad \diag{kan-2-cells-1} $$ \msk $$\begin{array}{rcl} \Nat(SK,T) & ≅ & \Nat(S,\Ran_KT) \\ ε·σK & \mapsot & σ \\ \end{array} \qquad \begin{array}{l} ∀S. \\ ∀α: SK \to T. \\ ∃!σ. \; α=ε·σK \\ \end{array} $$ \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % «elisp» (to ".elisp") (defun diagskel-univ () (interactive) (insert " %D diagram p58.1 %D 2Dx 100 +20 %D 2D 100 A1 %D 2D +20 A2 A3 %D 2D +20 A4 A5 %D 2D +15 B0 B1 %D 2D %D ren A1 ==> ? %D ren A2 A3 ==> ? ? %D ren A4 A5 ==> ∀? ? %D ren B0 B1 ==> ? ? %D %D (( A1 A3 -> .plabel= r ? %D A2 A3 |-> %D A2 A4 -> .plabel= l ∃!? %D A3 A5 -> .plabel= r ?? %D A4 A5 |-> %D A1 A5 -> .slide= 20pt .plabel= r ∀? %D A2 A5 harrownodes nil 20 nil |-> %D B0 B1 -> .plabel= a ? %D )) %D enddiagram $$\\pu \\diag{??} $$ ")) % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020cwm veryclean make -f 2019.mk STEM=2020cwm pdf % Local Variables: % coding: utf-8-unix % ee-tla: "cwm" % End: