Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2011ebl-slides.tex") % (find-angg ".emacs" "eblslides") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && dednat5 -t 2011ebl-slides.tex && latex 2011ebl-slides.tex" 1 '(eek "M->"))) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && dednat5 -t 2011ebl-slides.tex && pdflatex 2011ebl-slides.tex" 1 '(eek "M->"))) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && dednat5 -t 2011ebl-slides.tex && pdflatex 2011ebl-slides.tex")) % (find-LATEXfile "" "2011ebl-slides") % (eev "cd ~/LATEX/ && Scp 2011ebl-slides.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (defun d () (interactive) (find-dvipage "~/LATEX/2011ebl-slides.dvi")) % (find-dvipage "~/LATEX/2011ebl-slides.dvi") % (find-pspage "~/LATEX/2011ebl-slides.ps") % (find-pspage "~/LATEX/2011ebl-slides.pdf") % (find-xpdfpage "~/LATEX/2011ebl-slides.pdf") % (find-zsh0 "cd ~/LATEX/ && dvipdf 2011ebl-slides.dvi 2011ebl-slides.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -o 2011ebl-slides.ps 2011ebl-slides.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -o 2011ebl-slides.ps 2011ebl-slides.dvi && ps2pdf 2011ebl-slides.ps 2011ebl-slides.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2011ebl-slides.ps 2011ebl-slides.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2011ebl-slides.ps 2011ebl-slides.dvi && ps2pdf 2011ebl-slides.ps 2011ebl-slides.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2011ebl-slides.dvi" (ee-twupfile "e.dvi") 'over) % (ee-cp "~/LATEX/2011ebl-slides.pdf" (ee-twupfile "LATEX/2011ebl-slides.pdf") 'over) % (ee-cp "~/LATEX/2011ebl-slides.pdf" (ee-twusfile "LATEX/2011ebl-slides.pdf") 'over) % (find-twusfile "LATEX/" "2011ebl-slides") % http://angg.twu.net/LATEX/2011ebl-slides.pdf % «.geometry» (to "geometry") % «.BOX» (to "BOX") % «.mention-modal» (to "mention-modal") % «.mention-sheaves» (to "mention-sheaves") % «.zsets» (to "zsets") % «.black-pawns-moves» (to "black-pawns-moves") % «.partial-orders» (to "partial-orders") % «.cycles-are-evil» (to "cycles-are-evil") % «.dags-are-good» (to "dags-are-good") % «.fav-top-space» (to "fav-top-space") % «.fav-sh-and-presh» (to "fav-sh-and-presh") % «.compatibility» (to "compatibility") % «.evil-presheaf» (to "evil-presheaf") % «.stack-ops» (to "stack-ops") % «.stack-ops-2» (to "stack-ops-2") % «.covers-and-families» (to "covers-and-families") % «.saturated-families» (to "saturated-families") % «.double-sat» (to "double-sat") % «.L5op» (to "L5op") % «.L5op-HA» (to "L5op-HA") % «.priming» (to "priming") % «.thinness» (to "thinness") % «.presheaves» (to "presheaves") % «.closure-ops» (to "closure-ops") % «.closure-partitions» (to "closure-partitions") % «.what-next» (to "what-next") % \documentclass[a4paper,10pt]{article} \documentclass[10pt]{article} \usepackage[latin1]{inputenc} \usepackage[T1]{fontenc} % «geometry» (to ".geometry") % (find-angg ".emacs.papers" "latexgeom") % (find-latexgeomtext "total={6.5in,8.75in},") \usepackage[%total={6.5in,4in}, textwidth=4in, paperwidth=4.5in, textheight=5in, paperheight=4.5in, top=0.05in, left=0.2in%, includefoot ]{geometry} % (find-LATEXfile "2009unilog-dnc.aux") % (find-LATEXfile "2010unilog-current.aux") \def\NOEDRXDNT{1} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %%L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \usepackage[x11names]{xcolor} % (find-es "tex" "xcolor") \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") \input 2011ebl-slides.dnt % (find-fline "2011ebl-slides.dnt") \begin{document} \def\diagxyto{\ifnextchar/{\toop}{\toop/>/}} \def\mon{\diagxyto/ >->/} \def\epi{\diagxyto/->>/} \def\toleft{\diagxyto/<-/} \def\monleft{\diagxyto/<-< /} \def\epileft{\diagxyto/<<-/} \def\to{\rightarrow} \def\BPM#1{\mathsf{BPM}_{#1}} \def\ess{{\mathsf{ess}}} \def\irr{{\mathsf{irr}}} \def\refl{{\mathsf{refl}}} \def\trans{{\mathsf{trans}}} \def\bbC{{\mathbb{C}}} \def\bbD{{\mathbb{D}}} \def\bbE{{\mathbb{E}}} \def\bbF{{\mathbb{F}}} \def\bbG{{\mathbb{G}}} \def\bbH{{\mathbb{H}}} \def\bbK{{\mathbb{K}}} \def\bbV{{\mathbb{V}}} \def\bbW{{\mathbb{W}}} \def\qcomment#1#2{\phantom{#1}\red{$\ot$ #2}} % (find-dn5 "diagtex.lua" "arrows_to_defdiag") % (find-dn4 "experimental.lua" "BOX") % (find-dn5 "diagforth.lua" "enddiagram") % (find-dn5 "diagtex.lua" "arrows_to_defdiag") % «BOX» (to ".BOX") %L mybox_names = { %L "\\myboxa", %L "\\myboxb", %L "\\myboxc", %L "\\myboxd", %L "\\myboxe", %L "\\myboxf", %L "\\myboxg", %L "\\myboxh" %L } %L mybox_bodies = {} %L forths["BOX"] = function () %L tinsert(mybox_bodies, node_to_TeX(ds:pick(0))) %L ds:pick(0).tex = format("\\usebox{%s}", mybox_names[#mybox_bodies]) %L end %L arrows_to_defdiag = function (name, hyperlink) %L if #mybox_bodies > 0 then %L local prep = "" %L for i,body in ipairs(mybox_bodies) do %L prep = prep..format(" \\savebox{%s}{$%s$}\n", mybox_names[i], body) %L end %L return format("\\defdiagprep{%s}{%s\n%s }{\n%s}", %L name, (hyperlink or ""), %L prep, arrows_to_TeX(" ")) %L end %L return format("\\defdiag{%s}{%s\n%s}", %L name, (hyperlink or ""), %L arrows_to_TeX(" ")) %L end %L forths["enddiagram"] = function () %L output(arrows_to_defdiag(diagramname, " % no hyperlink yet")) %L mybox_bodies = {} %L end %L forths["sl^^"] = function () ds:pick(0).slide = "5pt" end %L forths["sl^"] = function () ds:pick(0).slide = "2.5pt" end %L forths["sl_"] = function () ds:pick(0).slide = "-2.5pt" end %L forths["sl__"] = function () ds:pick(0).slide = "-5pt" end %L forths["<-"] = function () pusharrow("<-") end %L forths["<--"] = function () pusharrow("<--") end % (find-dn5 "diagforth.lua" "nodes") % For "book": \def\mychapter #1#2{\chapter{#1}\label{#2}} \def\mysection #1#2{\section{#1}\label{#2}} \def\mysubsection#1#2{\subsection{#1}\label{#2}} % For "article": \def\mychapter #1#2{\section{#1}\label{#2}} \def\mysection #1#2{\subsection{#1}\label{#2}} \def\mysubsection#1#2{\subsubsection{#1}\label{#2}} \def\mysection #1#2{\section{#1}\label{#2}} \mylosopen{tmp.los} \def\myslide #1#2{\newpage{\bf #1}\par\label{#2}\addtolos{#1}} % \mylosopen{tmp.los} % \def\myslide #1#2{\newpage{\bf #1}\par\label{#2}} % Experimental, 2010jun19: \def\anchortargettext#1#2#3{\hypertarget{#1}{\href{\##2}{#3}}} \def\tocline#1#2{\par #1 \dotfill #2} \def\tocline#1#2{\par \anchortargettext{.#2}{#2}{#1} \dotfill #2} \def\myslide#1#2{\newpage{\bf #1}\par\label{#2}\addtolos{#1}} \def\myslide#1#2{\newpage {\bf \anchortargettext{\the\count0}{.\the\count0}{\arabic{page}. #1}} \par\label{#2}\addtolos{#1}} \def\lph#1{\leavevmode\phantom{#1}} \setlength{\parindent}{0pt} \pagestyle{empty} Sheaves over finite DAGs may be archetypal (Or: ``Sheaves for non-categorists''. \red{Work in progress}) \msk Eduardo Ochs - PURO/UFF eduardoochs@gmail.com \url{http://angg.twu.net/} \url{http://angg.twu.net/math-b.html#sheaves-on-zdags} \msk Presented at the XVI EBL (\url{http://www.cle.unicamp.br/ebl2011/}), held at Petrópolis, RJ, Brazil, on 2011may13. \red{These slides will probably be updated soon} \red{to make them more self-contained.} \newpage %* % (eedn4-51-bounded) Index of the slides: \msk % To update the list of slides uncomment this line: %\makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {Let's mystify the audience with technical terms} {3} \tocline {Let's mystify the audience a bit more} {4} \tocline {Well-positioned subsets of $Z^2$ (and ZSets)} {5} \tocline {Black pawn's moves (and ZDags)} {6} \tocline {Partial orders} {7} \tocline {Cycles are evil} {8} \tocline {DAGs are good} {9} \tocline {Our favorite topological space: ${\mathbb {V}}$} {10} \tocline {Our favorite sheaves and presheaves} {11} \tocline {Compatibility} {12} \tocline {The evil presheaf} {13} \tocline {Stack operations} {14} \tocline {Stack operations (2)} {15} \tocline {Covers and families} {16} \tocline {Saturated families} {17} \tocline {Adding unions} {18} \tocline {Priming} {19} \tocline {What next?} {20} \newpage % -------------------- % «mention-modal» (to ".mention-modal") % (s "Let's mystify the audience with technical terms" "mention-modal") \myslide {Let's mystify the audience with technical terms} {mention-modal} \msk {\bf Modal logic:} \par S4 has the finite model property. \par We have Gödel's translation: intuitionistic logic $\to$ S4 \par So: as $¬¬P ⊃ P$ is not a theorem of intutionistic logic \par $\funto$ there is a finite model (with two worlds) \par \lph{$\funto$} in which $¬¬P⊃P$ is not true. \par These finite counter-models are good for developing \par intuition about intuitionistic logic. \msk \par {\bf Category Theory:} \par Let $\bbW$ be a finite poset. \par ($\bbW$ is a system of possible worlds for S4, \par viewed as a category). \par Then $\Set^\bbW$ is a topos of presheaves. \par The logic of toposes is intuitionistic, \par and in $\Set^\bbW = \Set^{*\to*}$ we can falsify $¬¬P⊃P$. \msk \par Claim: \par Toposes of the form $\Set^\bbW$ are good for developing \par intuition about Topos Theory (and CT in general). % -------------------- % «mention-sheaves» (to ".mention-sheaves") % (s "Let's mystify the audience a bit more" "mention-sheaves") \myslide {Let's mystify the audience a bit more} {mention-sheaves} \msk \par Sheaves are very important in Topos Theory. \par Category Theory is \red{hard} (too abstract). \par Even \red{basic sheaf theory} is \red{too hard}. \par Idea: Let's use toposes of the form $\Set^\bbW$ \par to learn about sheaves! \msk \par In ``Internal Diagrams in Category Theory'' (2010) \par I ``defined'' (loosely) a way of thinking \par diagrammatically, and a notion of how much \par ``mental space'' each idea takes. \msk \par Specializations behave like projections, \par Generalizations behave like liftings: \msk %L defarrows "<-- <- <-| <." %D diagram spec-and-gen %D 2Dx 100 +70 %D 2D 100 G T %D 2D %D 2D +50 P S %D 2D %D (( G .tex= \arr{general\\theory} %D P .tex= \arr{particular\\case} %D T .tex= \arr{Toposes} %D S .tex= \arr{`$\Set^\bbW$'s} %D G P -> sl_ .plabel= l \arr{specialization\\(projection)} %D G P <-- sl^ .plabel= r \arr{generalization\\(lifting)} %D T S -> sl_ %D T S <-- sl^ %D )) %D enddiagram %D $\def\arr#1{\begin{array}{c}#1\end{array}} \def\arr#1{\begin{tabular}{c}#1\end{tabular}} \diag{spec-and-gen} $ \msk \par Can we learn/define/understand sheaves \par in toposes of the form $\Set^\bbW$ \par and then lift the theory to the general case? % -------------------- % «zsets» (to ".zsets") % (s "Well-positioned subsets of $Z^2$ (and ZSets)" "zsets") \myslide {Well-positioned subsets of $Z^2$ (and ZSets)} {zsets} \msk \par Def: a subset $D = \{(x_1,y_1),...,(x_n,y_n)\} \subset \Z^2$ \par is {\bf well-positioned} when $\inf_i x_i = 0$ and $\inf_i y_i = 0$. \msk \par Def: {\bf ZSet} is a finite well-positioned subset of $\Z^2$. \msk \par Examples: \par $Y = \{(0,2),(2,2),(1,1),(1,0)\}$ \par $K = \{(1,3),\,(0,2),(2,2),\,(1,1),\,(1,0)\}$ \msk \par They will usually be named according to their shapes \par (`K' is for `Kite'). % -------------------- % «black-pawns-moves» (to ".black-pawns-moves") % (s "Black pawn's moves (and ZDags)" "black-pawns-moves") \myslide {Black pawn's moves (and ZDags)} {black-pawns-moves} \bsk %D diagram Kite %D 2Dx 100 +20 +20 %D 2D 100 K1 %D 2D / \ %D 2D +20 K2 K3 %D 2D \ / %D 2D +20 K4 %D 2D | %D 2D +20 K5 %D 2D %D (( K1 .tex= (1,3) %D K2 .tex= (0,2) %D K3 .tex= (2,2) %D K4 .tex= (1,1) %D K5 .tex= (1,0) %D K1 K2 -> K1 K3 -> %D K2 K4 -> K3 K4 -> %D K4 K5 -> %D )) %D enddiagram %D % (find-pspage "~/IMAGES/black_pawns_moves.eps") $% \begin{array}{c} % \includegraphics[scale=0.35]{../IMAGES/black_pawns_moves.eps} \includegraphics[scale=0.35]{../IMAGES/black_pawns_moves} \end{array} \qquad \diag{Kite} $ Example: Let $K = \{(1,3),\,(0,2),(2,2),\,(1,1),\,(1,0)\}$. Then the set of {\bf black pawn's moves} on $K$, $\BPM{K}$, is the set of 5 arrows at the right. Let $\bbK = (K, \BPM{K})$ \qcomment{mmm}{this a DAG.} \bsk Every ZSet $D$ induces a DAG $\bbD = (D, \BPM{D})$ \qcomment{mmmmmi}{this a {\bf ZDag}.} % -------------------- % «partial-orders» (to ".partial-orders") % (s "Partial orders" "partial-orders") \myslide {Partial orders} {partial-orders} \msk \par We are interested in S4 and categories, so \par we like relations that are reflexive and transitive. \par It is clumsy to draw $(Y, \BPM{Y}^*)$ (at the right), \par so we'd like to make $(Y, \BPM{Y})$ (at the left) \par stand for $(Y, \BPM{Y}^*)$. %D diagram Y %D 2Dx 100 +20 +20 %D 2D 100 Y1 Y2 %D 2D \ / %D 2D +20 Y3 %D 2D | %D 2D +20 Y4 %D 2D %D (( Y1 .tex= (0,2) %D Y2 .tex= (2,2) %D Y3 .tex= (1,1) %D Y4 .tex= (1,0) %D Y1 Y3 -> Y2 Y3 -> Y3 Y4 -> %D # Y1 loop (ul,ur) %D # Y2 loop (ul,ur) %D # Y3 loop (ul,ur) %D # Y4 loop (dl,dr) %D # Y1 Y4 -> Y2 Y4 -> %D )) %D enddiagram %D %D diagram Y* %D 2Dx 100 +25 +25 %D 2D 100 Y1 Y2 %D 2D \ / %D 2D +20 Y3 %D 2D | %D 2D +20 Y4 %D 2D %D (( Y1 .tex= (0,2) %D Y2 .tex= (2,2) %D Y3 .tex= (1,1) %D Y4 .tex= (1,0) %D Y1 Y3 -> Y2 Y3 -> Y3 Y4 -> %D Y1 loop (ul,ur) %D Y2 loop (ul,ur) %D Y3 loop (ul,ur) %D Y4 loop (dl,dr) %D Y1 Y4 -> Y2 Y4 -> %D )) %D enddiagram %D $\diag{Y} \two/->`<--/<400>^{\rm (saturate)}_{\rm (?)} \diag{Y*} $ \par Let's say that two relations, $R$ and $S$, \par are {\bf equivalent} if $R^* = S^*$. \par The class $[R] = \sst{S}{S^* = R^*}$ has a top element, \par $R^*$, obtained by a kind of saturation process \par (transitive-reflexive closure). % -------------------- % «cycles-are-evil» (to ".cycles-are-evil") % (s "Cycles are evil" "cycles-are-evil") \myslide {Cycles are evil} {cycles-are-evil} \msk \par Let $T = (\{1,2,3\}, \{1,2,3\}^2)$ be the complete graph on $\{1,2,3\}$. \par Then $[T]$ has two different minimal elements: \msk %D diagram 123 %D 2Dx 100 +15 +15 %D 2D 100 1 2 %D 2D %D 2D +20 3 %D 2D %D (( 1 2 -> 2 3 -> 3 1 -> %D )) %D enddiagram %D %D diagram 321 %D 2Dx 100 +15 +15 %D 2D 100 1 2 %D 2D %D 2D +20 3 %D 2D %D (( 1 2 <- 2 3 <- 3 1 <- %D )) %D enddiagram %D %D diagram 123* %D 2Dx 100 +15 +15 %D 2D 100 1 2 %D 2D %D 2D +20 3 %D 2D %D (( 1 2 -> sl^ 1 2 <- sl_ 1 loop (ur,ul) %D 2 3 -> sl^ 2 3 <- sl_ 2 loop (ur,ul) %D 3 1 -> sl^ 3 1 <- sl_ 3 loop (dr,dl) %D )) %D enddiagram %D %D diagram loops-are-evil %D 2Dx 100 +70 %D 2D 100 123 %D 2D %D 2D +20 123* %D 2D %D 2D +20 321 %D 2D %D (( 123 .tex= \diag{123} BOX %D 321 .tex= \diag{321} BOX %D 123* .tex= \diag{123*} BOX %D 123 123* -> sl^ 123 123* <-- sl_ %D 321 123* -> sl^ 321 123* <-- sl_ %D )) %D enddiagram %D $\diag{loops-are-evil}$ \msk \par If we want to represent partial orders by minimal graphs \par we will need to avoid these... \par ``Reflexive'' arrows, i.e., those of the form $\aa \to \aa$ \par are (sort of) irrelevant, so let's ignore them: \par Def: $R^\refl$ is $R$ plus all reflexive arrows. \par Def: $R^\irr$ is $R$ minus all reflexive arrows. \par Def: $R$ is acyclic when \red{$R^\irr$} has no cycles. \qcomment{mmm}{not standard!} \par Then in each class $[R]$ either all elements are acyclic \par or all are cyclic. % (find-dn4ex "edrx08.sty" "diagprep") % (find-dn4ex "edrxdnt.tex" "defdiag") % (find-dn5file "preamble.lua") % (find-dn5file "README") % (find-LATEXfile "2011ebl-slides.dnt") % (find-LATEXfile "2010diags.dnt" "{dict-1}") % (find-LATEXfile "2011ebl-slides.dnt" "{loops-are-evil}") % -------------------- % «dags-are-good» (to ".dags-are-good") % (s "DAGs are good" "dags-are-good") \myslide {DAGs are good} {dags-are-good} \msk \par ``Acyclic'' for us is ``acyclic modulo reflexive arrows''... \par Consider the set of DAGs on a finite set of vertices $A$. \par The equivalence relation $R \sim S \iff R^*=S^*$ \par partitions it into equivalent classes that are ``diamond-shaped'', \par i.e., ``everything between a top and a bottom element'': \par $[R] = \sst{R'}{R^\ess \subseteq R' \subseteq R^*}$. \par To build $R^\ess$ from $R$ we drop all ``non-essential arrows''. \par (This is the dual of the saturation $R \mto R^*$). \msk \par Moral: we can represent finite partial orders canonically \par by their minimal DAGs (that only have ``essential arrows''). \par ZDags are finite, acyclic, and minimal. 8-) % -------------------- % «fav-top-space» (to ".fav-top-space") % (s "Our favorite topological space: $\bbV$" "fav-top-space") \myslide {Our favorite topological space: $\bbV$} {fav-top-space} \msk % \par Here it is: \par as a DAG, $\bbV = (V, \BPM{V}) = (\{\aa,\bb,\cc\}, \{(\aa\to\cc),(\bb\to\cc)\})$ \par as a partial order, $\bbV = (V, \BPM{V}^*)$ \par as a top. space, $\bbV = (X, \Opens(X))$ \qcomment{mmm}{note the renaming!} \par \lph{mm} $= (X, \{\{\aa,\bb,\cc\}, \{\aa,\cc\}, \{\bb,\cc\}, \{\cc\}, \{\}\})$ \par \lph{mm} $= (X, \{X, U, V, W, \emp\})$ \qcomment{mmmmmi}{names for the open sets} \par \lph{mm} $= (X, \{\dagVee111, \dagVee101, \dagVee011, \dagVee001, \dagVee000\})$ \qcomment{mmmmn}{positional notation!} \msk \par We can think of it as a quotient topology on $\R$... %D diagram V-as-quot %D 2Dx 100 +15 +15 +30 +15 +15 +30 +15 +15 %D 2D 100 \aa \bb qaa qbb paa pbb %D 2D %D 2D +15 \cc qcc pcc %D 2D %D 2D +15 X QX pX %D 2D %D 2D +15 U V QU QV pU pV %D 2D %D 2D +15 W QW pW %D 2D %D 2D +15 \emp Qemp pemp %D (( \aa \cc -> \bb \cc -> %D )) %D (( qaa .tex= (-‚,3] %D qbb .tex= [2,+‚) %D qcc .tex= (2,3) %D qaa qcc -> qbb qcc -> %D )) %D (( paa .tex= \dagVee*¢¢{} %D pbb .tex= \dagVee¢*¢{} %D pcc .tex= \dagVee¢¢*{} %D paa pcc -> pbb pcc -> %D )) %D (( X U -> X V -> U W -> V W -> W \emp -> %D )) %D (( QX .tex= (-‚,+‚) %D QU .tex= (-‚,3) %D QV .tex= (2,+‚) %D QW .tex= (2,3) %D Qemp .tex= \emp %D QX QU -> QX QV -> QU QW -> QV QW -> QW Qemp -> %D )) %D (( pX .tex= \dagVee111 %D pU .tex= \dagVee101 %D pV .tex= \dagVee011 %D pW .tex= \dagVee001 %D pemp .tex= \dagVee000 %D pX pU -> pX pV -> pU pW -> pV pW -> pW pemp -> %D )) %D enddiagram %D $\diag{V-as-quot}$ \msk \par I draw $X$ on top because it ``covers'' the other open sets, \par and because $\dagVee111$ is $§$ (``Top'') in the Heyting algebra \par (but $§$ is also the terminal... the HA must $\bbK^\op$). \par Surprise: $(\Opens(X), \supseteq^\ess)$ is a ZDag! % -------------------- % «fav-sh-and-presh» (to ".fav-sh-and-presh") % (s "Our favorite sheaves and presheaves" "fav-sh-and-presh") \myslide {Our favorite sheaves and presheaves} {fav-sh-and-presh} \msk \par Let's write $\Opens(\R)$ for $(\Opens(\R), \subseteq)$ \qcomment{mmn}{a category ($\nearrow\nwarrow$)} \par and $\Opens(\R)^\op$ for $(\Opens(\R), \supseteq)$. \qcomment{mmmmm}{another \;\;\;\;($\swarrow\searrow$)} \par Then $\calC^‚ Ý \Set^{\Opens(\R)^\op}$ is a \red{sheaf}. \par Bad news: it is too big to visualize. \msk \par We write $\bbV \equiv \dagVee***$ and $\bbK = \bbV' \equiv \dagKite*****$. \par Let's define presheaves $C^‚, E Ý \Set^\bbK$. \par A {\bf} presheaf in $\Set^\bbD$ is just a functor from $\bbD$ to $\Set$. \par \red{Sheafness} is \red{separatedness} plus \red{collatedness}. \par $C^‚$ will obey both, and $E$ will fail both. \par \msk %D diagram Cfo %D 2Dx 100 +15 +15 %D 2D 100 \foX %D 2D %D 2D +15 \foU \foV %D 2D %D 2D +15 \foW %D 2D %D 2D +15 \foe %D 2D %D (( \foX \foU -> \foX \foV -> %D \foU \foW -> \foV \foW -> %D \foW \foe -> %D )) %D enddiagram %D \def\diagCfo#1#2#3#4#5{% \def\foX{#1}% \def\foU{#2}% \def\foV{#3}% \def\foW{#4}% \def\foe{#5}% \diag{Cfo}} % $ C^‚ \;\; = \;\; \diagCfo{C^‚(X)}{C^‚(U)}{C^‚(V)}{C^‚(W)}{C^‚(\emp)} \;\; = \;\; \diagCfo{\calC^‚(\R)}{\calC^‚((-‚,1))\phantom{mm}}{\phantom{mm}\calC^‚((0,+‚))}{\calC^‚((0,1))}{\calC^‚(\emp)} $ % -------------------- % «compatibility» (to ".compatibility") % (s "Compatibility" "compatibility") \myslide {Compatibility} {compatibility} \msk \par Let $U=(-‚,3)$ and $V=(2,‚)$ (temporarily). \par Let $f_U Ý \calC^‚(U,\R)$ and $f_V Ý \calC^‚(V,\R)$, in: \bsk \par $ \diagCfo{\calC^‚(\R,\R)} {\calC^‚((-‚,3),\R)\phantom{mmmm}} {\phantom{mmmm}\calC^‚((2,+‚),\R)} {\calC^‚((2,3),\R)} {\calC^‚(\emp,\R)} $ \bsk \par We say that two ``locally defined functions'', $f_U$ and $f_V$, \par are {\bf compatible} iff they ``coincide wherever they're both \par defined'' (in the example: on $(2,3)$). \par More precisely: $f_U$ and $f_V$ are compatible iff $f_U|_{UÌV} = f_V|_{UÌV}$. % \par (To generalize, use the morphisms: $^U_{U∧V}(f_U) = ^V_{U∧V}(f_V)$). \par Sheafness means that every {\bf compatible family} $\{f_U, \ldots, f_V\}$ \par has exactly one glueing to an $f_{Uþ\ldotsþV}$ \par (collatedness guarantees existence of a glueing, \par separatedness guarantees that there is at most one). % -------------------- % «evil-presheaf» (to ".evil-presheaf") % (s "The evil presheaf" "evil-presheaf") \myslide {The evil presheaf} {evil-presheaf} % \msk \par Here is the ``evil presheaf'', $E:\dagKite***** \to \Set$. \par Note that everything here is given explicitly --- \par restriction functions that are the images of black pawn's moves, \par e.g., $^X_V:E(X) \to E(V)$, are {\sl drawn}; \par restriction functions like $^U_U$ are necessarily $= \id_{E(U)}$, and \par restriction functions like $^X_W$ are obtained by composition. \par Note (again!) that $E$ is a {\sl functor}. \msk \par % % (find-dn4 "experimental.lua" "relphantom") %L forths[".xtag="] = function () %L local x, y = ds:pick(1).x, ds:pick(1).y %L local dx, tag = getwordasluaexpr(), getword() %L tex = "\\ph{"..tag.."}" %L ds[1] = storenode {x=x+dx, y=y, tex=tex, tag=tag} %L end % %D diagram evil-presheaf %D 2Dx 100 +20 +20 +30 +20 +20 %D 2D 100 A0 B0 %D 2D / \ / \ %D 2D v v v v %D 2D +20 A1 A2 B1 B2 %D 2D \ / \ / %D 2D v v v v %D 2D +20 A3 B3 %D 2D | | %D 2D v v %D 2D +20 A4 B4 %D 2D %D (( A0 .tex= E(X) %D A1 .tex= E(U) %D A2 .tex= E(V) %D A3 .tex= E(W) %D A4 .tex= E(\emp) %D A0 A1 -> %D A0 A2 -> %D A1 A3 -> %D A2 A3 -> %D A3 A4 -> %D )) %D (( B0 .tex= \{e_X,e'_X\} place .xtag= -6 e_X .xtag= 12 e'_X %D # B1 .tex= \{e_U,e'_U\} place .xtag= -5 e_U .xtag= 10 e'_U %D B1 .tex= \{e_U\} place .xtag= 0 e_U .xtag= 0 e'_U %D B2 .tex= \{e_V,e'_V\} place .xtag= -5 e_V .xtag= 11 e'_V %D B3 .tex= \{e_W\} %D B4 .tex= \{e_\emp\} %D e_X e_U -> e'_X e'_U -> %D e_X e_V -> e'_X e_V -> %D e_U B3 -> e'_U B3 -> %D e_V B3 -> e'_V B3 -> %D B3 B4 -> %D )) %D enddiagram %D $ E \;\; = \;\; \diagCfo{E(X)}{E(U)}{E(V)}{E(W)}{E(\emp)} \;\; = \;\; % (find-LATEXgrep "grep -nH -e color *.tex") \def\ph#1{{\color{red}#1}} \def\ph#1{\phantom{#1}} \diag{evil-presheaf} $ \msk \par Then $\{e_U, e_V\}$ is a compatible family, \par because $e_U|_{UÌV} := ^U_W(e_U) = e^W$ and $e_V|_{UÌV} := ^V_W(e_V) = e^W$, \par but $\{e_U, e_V\}$ has two different glueings, $e_X$ and $e'_X$, \par so separatedness doesn't hold in $E$... \par Also, $\{e_U, e'_V\}$ is another compatible family, \par and this one has {\sl no glueings}. \par So collatedness also doesn't hold in $E$. % -------------------- % «stack-ops» (to ".stack-ops") % (s "Stack operations" "stack-ops") \myslide {Stack operations} {stack-ops} \msk \par The fastest way to formalize all this is by using {\bf stacks}. \par (This is not the standard way at all! I learned it from \par Harold Simmons's ``The point-free approach to sheafification''.) \msk \par This is $E$ as a stack: \par $ÆE = E(X)÷E(U)÷E(V)÷E(W)÷E(\emp)$ \par We have an operation called ``extent'', $[e_U] = U$, \par going from $ÆE$ to $Ø=\{X,U,V,W,\emp\}$, \par and a non-commutative `$·$', heavily overloaded, \par that behaves as {\sl restriction} when its left arg is in $ÆE$ \par and as {\sl intersection} when its left arg is in $Ø$: \msk \par $\begin{array}{lrl} U·V &:=& U∧V \\ &=& W \\ U·e_V &:=& U·[e_V] \\ &=& U·V \\ &=& W \\ e_U·V &:=& e_U|_{([e_U]·V)} \\ &=& e_W \\ e_U·e_V &:=& e_U|_{([e_U]·[e_V])} \\ &=& e_W \\ \end{array} $ % -------------------- % «stack-ops-2» (to ".stack-ops-2") % (s "Stack operations (2)" "stack-ops-2") \myslide {Stack operations (2)} {stack-ops-2} \msk \par The `$·$' also accepts sets as arguments, \par with the usual conventions: \par $\{a,b\}·\{c,d\} = \{a·c, a·d, b·c, b·d\}$, \par $a·\{b,c\} = \{a·b, a·c\}$, \par $\{a,b\}·c = \{a·c, b·c\}$. \par (Also: $[\{a,b\}] = \{[a],[b]\}$). \msk % -------------------- % «covers-and-families» (to ".covers-and-families") % (s "Covers and families" "covers-and-families") \myslide {Covers and families} {covers-and-families} \msk \par Def: a {\bf cover} is a subset of $Ø$. (Example: $\{U,V\}$) \par Def: a {\bf family} is a subset of $ÆE$ ``where $[·]$ is injective''. \par Def: a {\bf compatible family} is a family ``where `$·$' commutes''. \par Example 1: $\{e_V,e'_V\}$ is not a family. \par Example 2: $\{e_U,e_V\}$ is a compatible family. \par Example 3: $\{e_X,e'_V\}$ is non-compatible family. \msk \par $\def\ph#1{\phantom{#1}} \diag{evil-presheaf} $ \msk \par Notation for covers: $\calU, \calV, \ldots$, where $\bigcup\calV = V$. \par Notation for families: $e_\calU$, where $[e_\calU] = \calU$. \par Def: a cover $\calU$ is (downward) {\bf saturated} when $\calU·Ø=\calU$. \par Def: a family $e_\calU$ is (downward) {\bf saturated} when $e_\calU·Ø=e_\calU$. \par Example 4: $\{U,V\}·Ø = \{U,V,W,\emp\}$. \par Example 5: $\{e_U,e'_V\}·Ø = \{e_U,e'_V,e_W,e_\emp\}$. \par Example 6: $e_X·Ø = \{e_X, e_U, e_V, e_W, e_\emp\}$. \par Example 7: $e_X·\{U,V\}·Ø = \{e_U, e_V, e_W, e_\emp\}$. % -------------------- % «saturated-families» (to ".saturated-families") % (s "Saturated families" "saturated-families") \myslide {Saturated families} {saturated-families} \msk \par Let's annotate saturated covers with a `$*$'. \par So: $\calU$, $\calU'$, $\calU^*$, $\calU^{*\prime}$ are saturated families, \par possibly different, all ``covering $U$''. \msk \par Let's write the saturation operation, `$·Ø$', as `$()^*$', \par and let's say that $\calU \approx \calV$ when $(\calU)^*=(\calV)^*$, \par and write the equivalence classes as $[\calU]$. \msk \par On \red{finite DAGs} each equivalence class has both a top element \par and a bottom element: \par $[\calU] = \sst{\calU'}{(\calU)^¢ \subseteq \calU' \subseteq (\calU)^*}$. \par The operation $(\calU)^¢$, that drops all ``non-essential open sets'' \par in a cover, is new... \par and it also makes sense for families. % \par Each \red{compatible} family can be saturated in a unique way \msk \par Examples: \par $\{U,V,W\}^* = \{U,V,W,\emp\}$ \par $\{U,V,W\}^¢ = \{U,V\}$ \par $\{e_U,e_V,e_W\}^* = \{e_U,e_V,e_W,e_\emp\}$ \par $\{e_U,e_V,e_W\}^¢ = \{e_U,e_V\}$ % «.adding-unions» (to "adding-unions") % -------------------- % «adding-unions» (to ".adding-unions") % (s "Adding unions" "adding-unions") \myslide {Adding unions} {adding-unions} \msk \par In a \red{sheaf} $F:\bbK \to \Set$ every compatible family \par $f_\calU$ can be glued in a unique way to obtain a $f_U$, \par and we can obtain $f_\calU$ back from $f_U$: $f_\calU = f_U·\calU$. \msk \par To understand what is going on here we need \par another notion of saturation... \msk \par The `$*$' saturation adds {\sl smaller opens sets} to a cover; \par The `$**$' saturation also adds {\sl unions} to a cover. \msk %D diagram X** %D 2Dx 100 +30 +50 +35 +25 %D 2D 100 X ----> {X} --*--> {X}* dX dX* %D 2D <---- <-o--- |^ %D 2D *o||** %D 2D v| %D 2D +30 {U,V} --*-> {U,V}* dUV dUV* %D 2D <-o-- %D (( X .tex= X %D {X} .tex= \{X\} %D {X}* .tex= \{X,U,V,W,\emp\} %D {U,V} .tex= \{U,V\} %D {U,V}* .tex= \{U,V,W,\emp\} %D X {X} -> sl^ %D X {X} <- sl_ %D {X} {X}* -> sl^ .plabel= a * %D {X} {X}* <- sl_ .plabel= b ¢ %D {X}* {U,V}* --> sl_ .plabel= l *¢ %D {X}* {U,V}* <-- sl^ .plabel= r ** %D {U,V} {U,V}* -> sl^ .plabel= a * %D {U,V} {U,V}* <- sl_ .plabel= b ¢ %D )) %D (( dX .tex= \dagKite10000 %D dX* .tex= \dagKite11111 %D dUV .tex= \dagKite01100 %D dUV* .tex= \dagKite01111 %D dX dX* -> sl^ .plabel= a * %D dX dX* <- sl_ .plabel= b ¢ %D dX* dUV* .> sl_ .plabel= l *¢ %D dX* dUV* <. sl^ .plabel= r ** %D dUV dUV* -> sl^ .plabel= a * %D dUV dUV* <- sl_ .plabel= b ¢ %D )) %D enddiagram %D \par $\diag{X**}$ % (find-34page 10 "Quotient topologies") % (find-34 "" "quotient") % (find-34page 12 "set of saturated covers") % (find-34 "set of saturated covers") % -------------------- % «priming» (to ".priming") % (s "Priming" "priming") \myslide {Priming} {priming} \msk \input 2011ebl-defs.tex \def\G#1#2#3#4#5#6{\dagGuill{#1}{#2}{#3}{#4}{#5}{#6}} \def\A{\bigGuill 123456} \def\B{\hugeGuillPrime {\G 111111} % 12 {(\G 101111)} % 11 {\G 011111} % 10 {\G 001111} % 8 {(\G 010111)} % 9 {\G 001011} % 7 {(\G 000111)} % 5 {(\G 001010)} % 6 {\G 000011} % 4 {(\G 000010)} % 3 {(\G 000001)} % 2 {\G 000000} % 1 } % $$ % \bhbox{$\A$} \to \bhbox{$\B$} % $$ % %D diagram guill-priming %D 2Dx 100 +70 %D 2D 100 A B %D 2D %D 2D +50 C D %D 2D %D 2D +20 E F %D 2D %D (( A .tex= \A %D B .tex= \B %D C .tex= \dagGuill****** %D D .tex= (\dagGuill******)'=\dagGuillPrime************ %D A B `-> # .plabel= a \aa|->\{\aa\}^\coint %D C D `-> %D )) %D enddiagram %D $\diag{guill-priming}$ \msk \par To understand ``topological sheaves'' we take a DAG (e.g., $\bbV$) \par and prime it \red{twice}; the operations `$**$' and `$*¢$' work on $\bbV''$. \msk \par For ``generic'' sheaves (``sheaves on a site'') we take any DAG $\bbD$ \par to play the role of $\bbV'$ and an operation `$*$' on $\bbD$ \par that obeys three rules (obeyed by `$**$', of course), \par and from there on we treat what were ``open sets'' \par as ``truth-values'' (!!!), and the `$*$' as a modality (!!!!!). % -------------------- % «what-next» (to ".what-next") % (s "What next?" "what next") \myslide {What next?} {what next} \msk \par ...but that doesn't fit in 20 minutes! 8-( \par Look for the complete version of these slides in my home page! \msk \par \red{Goodbye! 8-)} %:*|-*\vdash * %: %: ------ -------- %: P|-P^* P^*|-Q^* %: %: %: %: %: %: % (find-34 "" "priming") % (find-34page 5 "priming") % (find-854 "" "prop-calc-in-a-hyp") % (find-854page 88 "prop-calc-in-a-hyp") % (find-34 "" "primingp") % (find-34page 5 "priming") % (find-34 "presheaves") % (find-34page 14 "presheaves") % (find-LATEX "2008graphs.tex") % (find-LATEX "2011ebl-abs.tex") %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: