Quick
index
main
eev
maths
blogme
dednat6
littlelangs
PURO
(GAC2,
C3TD,
λMDetc)
(Chapa 1)

emacs
lua
(la)tex
fvwm
agda
tcl
forth
icon
debian
irc
contact

C3 2021.2 - Eduardo Ochs (online por causa da pandemia)

Horários etc
Página do semestre anterior

Aulas:
aulas 1-3 (20 a 27/out): Agenda Acadêmica
aulas 4-5 (29/out e 3/nov): introdução ao curso. PDF,
   PDF antigo, video de 2020.2 (YT), video de 2021.1 (YT).
aula 6 (5/nov): vetores tangentes em R^2. PDF
aula 7 e 8 (10 a 12/nov): um vídeo sobre curvas de Bézier PDF, video 1.
Sexta, 12/nov: mini-teste 1. PDF.
Aula 9: tipos. PDF
Aula 11: "notação de físicos" PDF (video)




Importante: o material do curso é todo organizado pra fazer com que as pessoas 1) tenham dúvidas, 2) venham discutir elas nas aulas no Telegram, e 3) se habituem a discutir - tanto comigo quanto com os colegas - mandando fotos do que estão fazendo. Os motivos pra isso estão explicados neste primeiro PDF de Cálculo 2, principalmente nos slides 3 e 7 dele, e neste vídeo (YT) de 2021.1 sobre "dicas de estudo".

Obs: vou reusar muita coisa do material que eu preparei no semestre passado mas pretendo fazer muitas coisas novas também.

Vamos usar principalmente o livro do Humberto Bortolossi - "Cálculo Diferencial a Várias Variáveis" - e os livros do Felipe Acker.
Livros do Felipe Acker: "Cálculo Vetorial e Geometria Analítica", vols 1, 2, 3, 4.
Alguns capítulos do Bortolossi: 3, 4, 5, 6, 7, 8, 10. 11. 12.
Página do Bortolossi com material extra: http://www.im-uff.mat.br/puc-rio/cdfvv/livro/.

Vamos consultar algumas vezes o livro de Geometria Analítica do CEDERJ
e este "Material complementar para Geometria Analítica".
Ricardo Grande/Ricardo Silva: O símbolo e a realidade. Original, cópia local.

Outros livros que vamos usar no curso:
"APEX Calculus" - achei ele bem melhor que os livros comerciais
óbvios como o Thomas, o Stewart, etc.
https://aimath.org/textbooks/approved-textbooks/hartman-et-al/
http://www.apexcalculus.com/
Pra quem quiser baixar o livro todo eu recomendo a versão
"APEX Calculus, Version 4.0" (todos os capítulos), "black and white".

Silvanus P. Thompson: "Calculus Made Easy" (1914)
https://www.gutenberg.org/files/33283/33283-pdf.pdf

Vamos usar o cap.3 do Thomas:
http://angg.twu.net/2021.1-C3/thomas_weir_hass_giordano__calculus_11th_ed__cap_3.pdf
Dá pra comprar ele aqui:
https://www.amazon.com.br/C%C3%A1lculo-1-Maurice-D-Weir/dp/8581430864/
Ementa e programa (da disciplina de C3 em geral):
https://app.uff.br/graduacao/quadrodehorarios

Funções vetoriais de uma variável.
Funções reais de várias variáveis.
Continuidade.
Derivadas parciais e diferenciabilidade.
Fórmula de Taylor.

1. Função vetorial de uma variável real.
1.1. Definição e exemplos.
1.2. Limite e continuidade.
1.3. Derivada.
2. Funções reais de várias variáveis.
2.1. Funções reais de duas ou mais variáveis.
2.2. Gráficos e conjuntos de nível.
2.3. Noções de conjuntos abertos e fechados no R^n.
2.4. Limite e continuidade. Definição e propriedades.
3. Derivadas parciais e diferenciabilidade.
3.1. Derivadas parciais.
3.2. Função diferenciável.
     Uma condição suficiente para diferenciabilidade.
3.3. Plano tangente e reta normal.
3.4. Diferencial total.
3.5. Regra da cadeia e vetor gradiente.
3.6. Derivada direcional.
3.7. Derivadas parciais de ordens superiores.
3.8. Fórmula de Taylor.



Programa deste semestre:
(ainda vai sofrer pequenos ajustes)

Parte 1: Introdução aos objetos principais do curso
  (e a como visualizá-los)

1.1. Funções vetoriais de uma variável real (trajetórias)
  Pontos e vetores e a sua representação gráfica
  Vetor velocidade; retas parametrizadas
  Vetor aceleração; parábolas parametrizadas
  Aproximações de 1a e 2a ordem

1.2. Como visualizar superfícies do tipo z=F(x,y)
  Cortes por planos com z constante
  Curvas de nível
  Cortes por planos com x constante ou y constante
  Retas tangentes à superfície
  Introdução a planos tangentes
  Introdução a derivadas parciais
  Introdução a vetores normais e ao gradiente

1.3. Subconjuntos de R e R^2 abertos, fechados, compactos, etc.
  Como visualizar subconjuntos de R^2 escritos com "{|}".
  Bolas. Interior e fecho. Fronteira. Abertos e fechados.
  Conjuntos limitados, conjuntos compactos.
  Introdução ao Teorema de Weierstrass.
  Imagem inversa. (*) Imagem inversa de abertos e fechados.
  Introdução às definições de continuidade.

Parte 2: Uma visão mais formal
  Os mesmos tópicos de antes, mas agora numa abordagem mais formal,
  seguindo várias seções do livro bem de perto e incluindo
  casos em R^3 e R^n. Tópicos que a gente só vai ver na parte 2:
  diferenciabilidade, derivadas parciais de ordem mais alta, derivada
  direcional, derivada total, Teorema de Young, fórmula de Taylor,
  multiplicadores de Lagrange...

  Tópicos das aulas do dia ??? em diante:
    Ponto base
    Derivadas parciais de ordem mais alta
    Teorema de Young
    Regra da cadeia em R^2
    Derivada total
    Pontos críticos
    Aproximações de ordem n / polinônimos de Taylor
    Multiplicadores de Lagrange
Método de avaliação:
Duas provas e alguns mini-testes.
Cada mini-teste vale 0.5 pts a mais na prova correspondente
(a que vem depois dele - P1 ou P2).

Quando as aulas eram presenciais os mini-testes eram aplicados nos
últimos 15 minutos de algumas aulas - e os alunos eram avisados do dia
de cada um com antecedência e faziam um exercício parecido com o do
mini-teste na aula anterior. Desta vez vamos fazer algo parecido, mas
os alunos terão 24 horas pra entregar os seus mini-testes. As provas
também terão um prazo de 24 horas para serem entregues.

Grupo do Telegram: C3-M1-RCN-PURO-2021.2