Quick
index
main
eev
maths
blogme
dednat6
littlelangs
PURO
(GAC2,
C3TD,
λMDetc)
(Chapa 1)

emacs
lua
(la)tex
fvwm
agda
tcl
forth
icon
debian
irc
contact

C3 2022.1 - Eduardo Ochs

Salas, horários, etc
Página do semestre anterior

Fotos de todos os quadros:
http://angg.twu.net/2022.1-C3/
http://angg.twu.net/2022.1-C3/C3-quadros.pdf

Aulas 1 e 2 (30/mar e 1º/abr): introdução ao curso. PDF antigo.
Aulas 3 a 6: (6 a 15/abril): Vetores tangentes em R2. PDF antigo.
Aulas 7 a 9 (20 a 27/abril): séries de Taylor. PDF antigo, vídeo antigo (YT).
Aulas 10 até ?? (29/abril até ??): "notação de físicos". PDF novo.
   Aulas 21 e 22 (8 e 10/junho): fiquei doente.
Mini-teste 1: 24/junho. PDF.

Grupo do Telegram:
C3-M1-RCN-PURO-2022.1

O código-fonte dos PDFs está aqui.
O PDFzão com todos os PDFzinhos colados num só está aqui.
Eles quase sempre estão desatualizados. 🙁


Livros

Vamos usar duas notações diferentes no curso:
a notação "moderna" ("notação de matemáticos")
e a notação "antiga" ("notação de físicos").

Os nossos livros principais em "notação de matemáticos" vão ser o
"Cálculo Diferencial a Várias Variáveis" do Humberto Bortolossi -
links pra alguns capítulos dele: 3, 4, 5, 6, 7, 8, 10, 11, 12 - e o
"Cálculo Vetorial e Geometria Analítica" do Felipe Acker, vols 1, 2, 3, 4.
Página do Bortolossi com material extra.

O nosso livro principal em "notação de físicos" vai ser o do
Silvanus P. Thompson: "Calculus Made Easy" (1914)
Algumas páginas sobre ele: HN 1, 2, 3, WP.
Grande/Silva: O símbolo e a realidade. Original, cópia local.

Vamos usar algumas seções do Thomas: 3, 3.10, 5.3, 5.5-5.6, 14.1-14.7, 15.1-15.3.
Dá pra comprar ele usado aqui.

Vamos consultar algumas vezes o livro de Geometria Analítica do CEDERJ
e este "Material complementar para Geometria Analítica".

Outros livros que vamos usar no curso:
"APEX Calculus" - achei ele bem melhor que os livros comerciais
óbvios como o Thomas, o Stewart, etc.
https://aimath.org/textbooks/approved-textbooks/hartman-et-al/
http://www.apexcalculus.com/
Pra quem quiser baixar o livro todo eu recomendo a versão
"APEX Calculus, Version 4.0" (todos os capítulos), "black and white".


Ementa e programa

https://app.uff.br/graduacao/quadrodehorarios

Funções vetoriais de uma variável.
Funções reais de várias variáveis.
Continuidade.
Derivadas parciais e diferenciabilidade.
Fórmula de Taylor.

1. Função vetorial de uma variável real.
1.1. Definição e exemplos.
1.2. Limite e continuidade.
1.3. Derivada.
2. Funções reais de várias variáveis.
2.1. Funções reais de duas ou mais variáveis.
2.2. Gráficos e conjuntos de nível.
2.3. Noções de conjuntos abertos e fechados no R^n.
2.4. Limite e continuidade. Definição e propriedades.
3. Derivadas parciais e diferenciabilidade.
3.1. Derivadas parciais.
3.2. Função diferenciável.
     Uma condição suficiente para diferenciabilidade.
3.3. Plano tangente e reta normal.
3.4. Diferencial total.
3.5. Regra da cadeia e vetor gradiente.
3.6. Derivada direcional.
3.7. Derivadas parciais de ordens superiores.
3.8. Fórmula de Taylor.



Programa deste semestre:
(ainda vai sofrer pequenos ajustes)

Parte 1: Introdução aos objetos principais do curso
  (e a como visualizá-los)

1.1. Funções vetoriais de uma variável real (trajetórias)
  Pontos e vetores e a sua representação gráfica
  Vetor velocidade; retas parametrizadas
  Vetor aceleração; parábolas parametrizadas
  Aproximações de 1a e 2a ordem

1.2. Como visualizar superfícies do tipo z=F(x,y)
  Cortes por planos com z constante
  Curvas de nível
  Cortes por planos com x constante ou y constante
  Retas tangentes à superfície
  Introdução a planos tangentes
  Introdução a derivadas parciais
  Introdução a vetores normais e ao gradiente

1.3. Subconjuntos de R e R^2 abertos, fechados, compactos, etc.
  Como visualizar subconjuntos de R^2 escritos com "{|}".
  Bolas. Interior e fecho. Fronteira. Abertos e fechados.
  Conjuntos limitados, conjuntos compactos.
  Introdução ao Teorema de Weierstrass.
  Imagem inversa. (*) Imagem inversa de abertos e fechados.
  Introdução às definições de continuidade.

Parte 2: Uma visão mais formal
  Os mesmos tópicos de antes, mas agora numa abordagem mais formal,
  seguindo várias seções do livro bem de perto e incluindo
  casos em R^3 e R^n. Tópicos que a gente só vai ver na parte 2:
  diferenciabilidade, derivadas parciais de ordem mais alta, derivada
  direcional, derivada total, Teorema de Young, fórmula de Taylor,
  multiplicadores de Lagrange...

  Tópicos das aulas do dia ??? em diante:
    Ponto base
    Derivadas parciais de ordem mais alta
    Teorema de Young
    Regra da cadeia em R^2
    Derivada total
    Pontos críticos
    Aproximações de ordem n / polinônimos de Taylor
    Multiplicadores de Lagrange
Método de avaliação:
Duas provas e alguns mini-testes.
Cada mini-teste vale 0.5 pts a mais na prova correspondente
(a que vem depois dele - P1 ou P2).